Cargando…
Restaining-based annotation for cancer histology segmentation to overcome annotation-related limitations among pathologists
Numerous cancer histopathology specimens have been collected and digitized over the past few decades. A comprehensive evaluation of the distribution of various cells in tumor tissue sections can provide valuable information for understanding cancer. Deep learning is suitable for achieving these goal...
Autores principales: | Komura, Daisuke, Onoyama, Takumi, Shinbo, Koki, Odaka, Hiroto, Hayakawa, Minako, Ochi, Mieko, Herdiantoputri, Ranny Rahaningrum, Endo, Haruya, Katoh, Hiroto, Ikeda, Tohru, Ushiku, Tetsuo, Ishikawa, Shumpei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982301/ https://www.ncbi.nlm.nih.gov/pubmed/36873900 http://dx.doi.org/10.1016/j.patter.2023.100688 |
Ejemplares similares
-
Hybrid genome assembly and annotation of Danionella translucida
por: Kadobianskyi, Mykola, et al.
Publicado: (2019) -
An annotated dataset of bioacoustic sensing and features of mosquitoes
por: Vasconcelos, Dinarte, et al.
Publicado: (2020) -
Aachen-Heerlen annotated steel microstructure dataset
por: Iren, Deniz, et al.
Publicado: (2021) -
Immune repertoire profiling for disease pathobiology
por: Katoh, Hiroto, et al.
Publicado: (2022) -
Linking FANTOM5 CAGE peaks to annotations with CAGEscan
por: Bertin, Nicolas, et al.
Publicado: (2017)