Cargando…
GCNSA: DNA storage encoding with a graph convolutional network and self-attention
DNA Encoding, as a key step in DNA storage, plays an important role in reading and writing accuracy and the storage error rate. However, currently, the encoding efficiency is not high enough and the encoding speed is not fast enough, which limits the performance of DNA storage systems. In this work,...
Autores principales: | Cao, Ben, Wang, Bin, Zhang, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982308/ https://www.ncbi.nlm.nih.gov/pubmed/36876131 http://dx.doi.org/10.1016/j.isci.2023.106231 |
Ejemplares similares
-
DBTRG: De Bruijn Trim rotation graph encoding for reliable DNA storage()
por: Zhao, Yunzhu, et al.
Publicado: (2023) -
Attention enhanced capsule network for text classification by encoding syntactic dependency trees with graph convolutional neural network
por: Jia, Xudong, et al.
Publicado: (2022) -
Spatial–Temporal Self-Attention Enhanced Graph Convolutional Networks for Fitness Yoga Action Recognition
por: Wei, Guixiang, et al.
Publicado: (2023) -
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
por: Li, Cong, et al.
Publicado: (2022) -
Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network
por: Cao, Ruifen, et al.
Publicado: (2022)