Cargando…

The origin and evolution of methanogenesis and Archaea are intertwined

Methanogenesis has been widely accepted as an ancient metabolism, but the precise evolutionary trajectory remains hotly debated. Disparate theories exist regarding its emergence time, ancestral form, and relationship with homologous metabolisms. Here, we report the phylogenies of anabolism-involved...

Descripción completa

Detalles Bibliográficos
Autores principales: Mei, Ran, Kaneko, Masanori, Imachi, Hiroyuki, Nobu, Masaru K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982363/
https://www.ncbi.nlm.nih.gov/pubmed/36874274
http://dx.doi.org/10.1093/pnasnexus/pgad023
Descripción
Sumario:Methanogenesis has been widely accepted as an ancient metabolism, but the precise evolutionary trajectory remains hotly debated. Disparate theories exist regarding its emergence time, ancestral form, and relationship with homologous metabolisms. Here, we report the phylogenies of anabolism-involved proteins responsible for cofactor biosynthesis, providing new evidence for the antiquity of methanogenesis. Revisiting the phylogenies of key catabolism-involved proteins further suggests that the last Archaea common ancestor (LACA) was capable of versatile H(2)-, CO(2)-, and methanol-utilizing methanogenesis. Based on phylogenetic analyses of the methyl/alkyl-S-CoM reductase family, we propose that, in contrast to current paradigms, substrate-specific functions emerged through parallel evolution traced back to a nonspecific ancestor, which likely originated from protein-free reactions as predicted from autocatalytic experiments using cofactor F(430). After LACA, inheritance/loss/innovation centered around methanogenic lithoautotrophy coincided with ancient lifestyle divergence, which is clearly reflected by genomically predicted physiologies of extant archaea. Thus, methanogenesis is not only a hallmark metabolism of Archaea, but the key to resolve the enigmatic lifestyle that ancestral archaea took and the transition that led to physiologies prominent today.