Cargando…
A proposed novel adaptive DC technique for non-stationary data removal
The stationarity of a time series is an important assumption in the Box-Jenkins methodology. Removing the non-stationary feature from the time series can be done using a differencing technique or a logarithmic transformation approach, but it is not guaranteed from the first step. This paper proposes...
Autores principales: | Musbah, Hmeda, Aly, Hamed H., Little, Timothy A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982618/ https://www.ncbi.nlm.nih.gov/pubmed/36873500 http://dx.doi.org/10.1016/j.heliyon.2023.e13903 |
Ejemplares similares
-
FlexSketch: Estimation of Probability Density for Stationary and Non-Stationary Data Streams
por: Park, Namuk, et al.
Publicado: (2021) -
SENSORY ADAPTATION AND THE STATIONARY STATE
por: Hecht, Selig
Publicado: (1923) -
Information Theory for Non-Stationary Processes with Stationary Increments
por: Granero-Belinchón, Carlos, et al.
Publicado: (2019) -
Adaptive windowing based recurrent neural network for drift adaption in non-stationary environment
por: Suryawanshi, Shubhangi, et al.
Publicado: (2022) -
Block-Adaptive Rényi Entropy-Based Denoising for Non-Stationary Signals
por: Saulig, Nicoletta, et al.
Publicado: (2022)