Cargando…
Prevention of Unplanned Hospital Admissions in Multimorbid Patients Using Computational Modeling: Observational Retrospective Cohort Study
BACKGROUND: Enhanced management of multimorbidity constitutes a major clinical challenge. Multimorbidity shows well-established causal relationships with the high use of health care resources and, specifically, with unplanned hospital admissions. Enhanced patient stratification is vital for achievin...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982720/ https://www.ncbi.nlm.nih.gov/pubmed/367954 http://dx.doi.org/10.2196/40846 |
_version_ | 1784900387566780416 |
---|---|
author | González-Colom, Rubèn Herranz, Carmen Vela, Emili Monterde, David Contel, Joan Carles Sisó-Almirall, Antoni Piera-Jiménez, Jordi Roca, Josep Cano, Isaac |
author_facet | González-Colom, Rubèn Herranz, Carmen Vela, Emili Monterde, David Contel, Joan Carles Sisó-Almirall, Antoni Piera-Jiménez, Jordi Roca, Josep Cano, Isaac |
author_sort | González-Colom, Rubèn |
collection | PubMed |
description | BACKGROUND: Enhanced management of multimorbidity constitutes a major clinical challenge. Multimorbidity shows well-established causal relationships with the high use of health care resources and, specifically, with unplanned hospital admissions. Enhanced patient stratification is vital for achieving effectiveness through personalized postdischarge service selection. OBJECTIVE: The study has a 2-fold aim: (1) generation and assessment of predictive models of mortality and readmission at 90 days after discharge; and (2) characterization of patients’ profiles for personalized service selection purposes. METHODS: Gradient boosting techniques were used to generate predictive models based on multisource data (registries, clinical/functional and social support) from 761 nonsurgical patients admitted in a tertiary hospital over 12 months (October 2017 to November 2018). K-means clustering was used to characterize patient profiles. RESULTS: Performance (area under the receiver operating characteristic curve, sensitivity, and specificity) of the predictive models was 0.82, 0.78, and 0.70 and 0.72, 0.70, and 0.63 for mortality and readmissions, respectively. A total of 4 patients’ profiles were identified. In brief, the reference patients (cluster 1; 281/761, 36.9%), 53.7% (151/281) men and mean age of 71 (SD 16) years, showed 3.6% (10/281) mortality and 15.7% (44/281) readmissions at 90 days following discharge. The unhealthy lifestyle habit profile (cluster 2; 179/761, 23.5%) predominantly comprised males (137/179, 76.5%) with similar age, mean 70 (SD 13) years, but showed slightly higher mortality (10/179, 5.6%) and markedly higher readmission rate (49/179, 27.4%). Patients in the frailty profile (cluster 3; 152/761, 19.9%) were older (mean 81 years, SD 13 years) and predominantly female (63/152, 41.4%, males). They showed medical complexity with a high level of social vulnerability and the highest mortality rate (23/152, 15.1%), but with a similar hospitalization rate (39/152, 25.7%) compared with cluster 2. Finally, the medical complexity profile (cluster 4; 149/761, 19.6%), mean age 83 (SD 9) years, 55.7% (83/149) males, showed the highest clinical complexity resulting in 12.8% (19/149) mortality and the highest readmission rate (56/149, 37.6%). CONCLUSIONS: The results indicated the potential to predict mortality and morbidity-related adverse events leading to unplanned hospital readmissions. The resulting patient profiles fostered recommendations for personalized service selection with the capacity for value generation. |
format | Online Article Text |
id | pubmed-9982720 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-99827202023-03-04 Prevention of Unplanned Hospital Admissions in Multimorbid Patients Using Computational Modeling: Observational Retrospective Cohort Study González-Colom, Rubèn Herranz, Carmen Vela, Emili Monterde, David Contel, Joan Carles Sisó-Almirall, Antoni Piera-Jiménez, Jordi Roca, Josep Cano, Isaac J Med Internet Res Original Paper BACKGROUND: Enhanced management of multimorbidity constitutes a major clinical challenge. Multimorbidity shows well-established causal relationships with the high use of health care resources and, specifically, with unplanned hospital admissions. Enhanced patient stratification is vital for achieving effectiveness through personalized postdischarge service selection. OBJECTIVE: The study has a 2-fold aim: (1) generation and assessment of predictive models of mortality and readmission at 90 days after discharge; and (2) characterization of patients’ profiles for personalized service selection purposes. METHODS: Gradient boosting techniques were used to generate predictive models based on multisource data (registries, clinical/functional and social support) from 761 nonsurgical patients admitted in a tertiary hospital over 12 months (October 2017 to November 2018). K-means clustering was used to characterize patient profiles. RESULTS: Performance (area under the receiver operating characteristic curve, sensitivity, and specificity) of the predictive models was 0.82, 0.78, and 0.70 and 0.72, 0.70, and 0.63 for mortality and readmissions, respectively. A total of 4 patients’ profiles were identified. In brief, the reference patients (cluster 1; 281/761, 36.9%), 53.7% (151/281) men and mean age of 71 (SD 16) years, showed 3.6% (10/281) mortality and 15.7% (44/281) readmissions at 90 days following discharge. The unhealthy lifestyle habit profile (cluster 2; 179/761, 23.5%) predominantly comprised males (137/179, 76.5%) with similar age, mean 70 (SD 13) years, but showed slightly higher mortality (10/179, 5.6%) and markedly higher readmission rate (49/179, 27.4%). Patients in the frailty profile (cluster 3; 152/761, 19.9%) were older (mean 81 years, SD 13 years) and predominantly female (63/152, 41.4%, males). They showed medical complexity with a high level of social vulnerability and the highest mortality rate (23/152, 15.1%), but with a similar hospitalization rate (39/152, 25.7%) compared with cluster 2. Finally, the medical complexity profile (cluster 4; 149/761, 19.6%), mean age 83 (SD 9) years, 55.7% (83/149) males, showed the highest clinical complexity resulting in 12.8% (19/149) mortality and the highest readmission rate (56/149, 37.6%). CONCLUSIONS: The results indicated the potential to predict mortality and morbidity-related adverse events leading to unplanned hospital readmissions. The resulting patient profiles fostered recommendations for personalized service selection with the capacity for value generation. JMIR Publications 2023-02-16 /pmc/articles/PMC9982720/ /pubmed/367954 http://dx.doi.org/10.2196/40846 Text en ©Rubèn González-Colom, Carmen Herranz, Emili Vela, David Monterde, Joan Carles Contel, Antoni Sisó-Almirall, Jordi Piera-Jiménez, Josep Roca, Isaac Cano. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 16.02.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper González-Colom, Rubèn Herranz, Carmen Vela, Emili Monterde, David Contel, Joan Carles Sisó-Almirall, Antoni Piera-Jiménez, Jordi Roca, Josep Cano, Isaac Prevention of Unplanned Hospital Admissions in Multimorbid Patients Using Computational Modeling: Observational Retrospective Cohort Study |
title | Prevention of Unplanned Hospital Admissions in Multimorbid Patients Using Computational Modeling: Observational Retrospective Cohort Study |
title_full | Prevention of Unplanned Hospital Admissions in Multimorbid Patients Using Computational Modeling: Observational Retrospective Cohort Study |
title_fullStr | Prevention of Unplanned Hospital Admissions in Multimorbid Patients Using Computational Modeling: Observational Retrospective Cohort Study |
title_full_unstemmed | Prevention of Unplanned Hospital Admissions in Multimorbid Patients Using Computational Modeling: Observational Retrospective Cohort Study |
title_short | Prevention of Unplanned Hospital Admissions in Multimorbid Patients Using Computational Modeling: Observational Retrospective Cohort Study |
title_sort | prevention of unplanned hospital admissions in multimorbid patients using computational modeling: observational retrospective cohort study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982720/ https://www.ncbi.nlm.nih.gov/pubmed/367954 http://dx.doi.org/10.2196/40846 |
work_keys_str_mv | AT gonzalezcolomruben preventionofunplannedhospitaladmissionsinmultimorbidpatientsusingcomputationalmodelingobservationalretrospectivecohortstudy AT herranzcarmen preventionofunplannedhospitaladmissionsinmultimorbidpatientsusingcomputationalmodelingobservationalretrospectivecohortstudy AT velaemili preventionofunplannedhospitaladmissionsinmultimorbidpatientsusingcomputationalmodelingobservationalretrospectivecohortstudy AT monterdedavid preventionofunplannedhospitaladmissionsinmultimorbidpatientsusingcomputationalmodelingobservationalretrospectivecohortstudy AT conteljoancarles preventionofunplannedhospitaladmissionsinmultimorbidpatientsusingcomputationalmodelingobservationalretrospectivecohortstudy AT sisoalmirallantoni preventionofunplannedhospitaladmissionsinmultimorbidpatientsusingcomputationalmodelingobservationalretrospectivecohortstudy AT pierajimenezjordi preventionofunplannedhospitaladmissionsinmultimorbidpatientsusingcomputationalmodelingobservationalretrospectivecohortstudy AT rocajosep preventionofunplannedhospitaladmissionsinmultimorbidpatientsusingcomputationalmodelingobservationalretrospectivecohortstudy AT canoisaac preventionofunplannedhospitaladmissionsinmultimorbidpatientsusingcomputationalmodelingobservationalretrospectivecohortstudy |