Cargando…
Which data subset should be augmented for deep learning? a simulation study using urothelial cell carcinoma histopathology images
BACKGROUND: Applying deep learning to digital histopathology is hindered by the scarcity of manually annotated datasets. While data augmentation can ameliorate this obstacle, its methods are far from standardized. Our aim was to systematically explore the effects of skipping data augmentation; apply...
Autores principales: | Ameen, Yusra A., Badary, Dalia M., Abonnoor, Ahmad Elbadry I., Hussain, Khaled F., Sewisy, Adel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983182/ https://www.ncbi.nlm.nih.gov/pubmed/36869300 http://dx.doi.org/10.1186/s12859-023-05199-y |
Ejemplares similares
-
Differentiation of urothelial carcinoma in histopathology images using deep learning and visualization
por: Mundhada, Aniruddha, et al.
Publicado: (2022) -
Endobronchial tuberculosis: histopathological subsets and microbiological results
por: Ozkaya, Sevket, et al.
Publicado: (2012) -
An optimized approach for simultaneous horizontal data fragmentation and allocation in Distributed Database Systems (DDBSs)
por: Amer, Ali A., et al.
Publicado: (2018) -
Clinical, demographic and histopathological prognostic factors for urothelial carcinoma of the bladder
por: Kucuk, Ulku, et al.
Publicado: (2015) -
The Prognostic Impact of Histopathological Variants in Patients with Advanced Urothelial Carcinoma
por: Hsieh, Meng-Che, et al.
Publicado: (2015)