Cargando…
SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics
Spatially resolved transcriptomics (SRT)-specific computational methods are often developed, tested, validated, and evaluated in silico using simulated data. Unfortunately, existing simulated SRT data are often poorly documented, hard to reproduce, or unrealistic. Single-cell simulators are not dire...
Autores principales: | Zhu, Jiaqiang, Shang, Lulu, Zhou, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983268/ https://www.ncbi.nlm.nih.gov/pubmed/36869394 http://dx.doi.org/10.1186/s13059-023-02879-z |
Ejemplares similares
-
SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies
por: Zhu, Jiaqiang, et al.
Publicado: (2021) -
Spatially resolved whole transcriptome profiling in human and mouse tissue using Digital Spatial Profiling
por: Zimmerman, Stephanie M., et al.
Publicado: (2022) -
Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities
por: Miller, Brendan F., et al.
Publicado: (2021) -
Dual spatially resolved transcriptomics for human host–pathogen colocalization studies in FFPE tissue sections
por: Sounart, Hailey, et al.
Publicado: (2023) -
SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies
por: Guo, Tiantian, et al.
Publicado: (2023)