Cargando…

Chondroprotective Mechanism of Eucommia ulmoides Oliv.-Glycyrrhiza uralensis Fisch. Couplet Medicines in Knee Osteoarthritis via Experimental Study and Network Pharmacology Analysis

BACKGROUND: Knee osteoarthritis (KOA) is the primary prevalent disabling joint disorder among osteoarthritis (OA), and there is no particularly effective treatment at the clinic. Traditional Chinese medicine (TCM) herbs, such as Eucommia ulmoides Oliv. and Glycyrrhiza uralensis Fisch. (E.G.) couplet...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Pinger, Xu, Jianbo, Sun, Qi, Ge, Qinwen, Qiu, Min, Zou, Kaiao, Ying, Jun, Yuan, Wenhua, Chen, Jiali, Zeng, Qinghe, Cui, Qi, Jin, Hongting, Zhang, Chunchun, Li, Fanzhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983602/
https://www.ncbi.nlm.nih.gov/pubmed/36875721
http://dx.doi.org/10.2147/DDDT.S397185
Descripción
Sumario:BACKGROUND: Knee osteoarthritis (KOA) is the primary prevalent disabling joint disorder among osteoarthritis (OA), and there is no particularly effective treatment at the clinic. Traditional Chinese medicine (TCM) herbs, such as Eucommia ulmoides Oliv. and Glycyrrhiza uralensis Fisch. (E.G.) couplet medicines, have been reported to exhibit beneficial health effects on KOA, exact mechanism of E.G. nevertheless is not fully elucidated. PURPOSE: We assess the therapeutic effects of E.G. on KOA and explore its underlying molecular mechanism. METHODS: UPLC-Q-TOF/MS technique was used to analyze the active chemical constituents of E.G. The destabilization of the medial meniscus model (DMM) was employed to evaluate the chondroprotective action of E.G. in KOA mice using histomorphometry, μCT, behavioral testing and immunohistochemical staining. Additionally, network pharmacology and molecular docking were used to predict potential targets for anti-KOA activities of E.G., which was further verified through in vitro experiments. RESULTS: In vivo studies have shown that E.G. could significantly ameliorate DMM-induced KOA phenotypes including subchondral bone sclerosis, cartilage degradation, gait abnormality and thermal pain reaction sensibility. E.G. treatment could also promote extracellular matrix synthesis to protect articular chondrocytes, which was indicated by Col2 and Aggrecan expressions, as well as reducing matrix degradation by inhibiting MMP13 expression. Interestingly, network pharmacologic analysis showed that PPARG might be a therapeutic center. Further study proved that E.G.-containing serum (EGS) could up-regulate PPARG mRNA level in IL-1β-induced chondrocytes. Notably, significant effects of EGS on the increment of anabolic gene expressions (Col2, Aggrecan) and the decrement of catabolic gene expressions (MMP13, Adamts5) in KOA chondrocytes were abolished due to the silence of PPARG. CONCLUSION: E.G. played a chondroprotective role in anti-KOA by inhibiting extracellular matrix degradation, which might be related to PPARG.