Cargando…

Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson’s disease

BACKGROUND: Much of our understanding of the deficits in force control in Parkinson’s disease (PD) relies on findings in the upper extremity. Currently, there is a paucity of data pertaining to the effect of PD on lower limb force control. OBJECTIVE: The purpose of this study was to concurrently eva...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Jae Woo, Knight, Christopher A., Bower, Abigail E., Martello, Justin P., Jeka, John J., Burciu, Roxana G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983837/
https://www.ncbi.nlm.nih.gov/pubmed/36867628
http://dx.doi.org/10.1371/journal.pone.0282203
_version_ 1784900624728457216
author Chung, Jae Woo
Knight, Christopher A.
Bower, Abigail E.
Martello, Justin P.
Jeka, John J.
Burciu, Roxana G.
author_facet Chung, Jae Woo
Knight, Christopher A.
Bower, Abigail E.
Martello, Justin P.
Jeka, John J.
Burciu, Roxana G.
author_sort Chung, Jae Woo
collection PubMed
description BACKGROUND: Much of our understanding of the deficits in force control in Parkinson’s disease (PD) relies on findings in the upper extremity. Currently, there is a paucity of data pertaining to the effect of PD on lower limb force control. OBJECTIVE: The purpose of this study was to concurrently evaluate upper- and lower-limb force control in early-stage PD and a group of age- and gender-matched healthy controls. METHODS: Twenty individuals with PD and twenty-one healthy older adults participated in this study. Participants performed two visually guided, submaximal (15% of maximum voluntary contractions) isometric force tasks: a pinch grip task and an ankle dorsiflexion task. PD were tested on their more affected side and after overnight withdrawal from antiparkinsonian medication. The tested side in controls was randomized. Differences in force control capacity were assessed by manipulating speed-based and variability-based task parameters. RESULTS: Compared with controls, PD demonstrated slower rates of force development and force relaxation during the foot task, and a slower rate of relaxation during the hand task. Force variability was similar across groups but greater in the foot than in the hand in both PD and controls. Lower limb rate control deficits were greater in PD with more severe symptoms based on the Hoehn and Yahr stage. CONCLUSIONS: Together, these results provide quantitative evidence of an impaired capacity in PD to produce submaximal and rapid force across multiple effectors. Moreover, results suggest that force control deficits in the lower limb may become more severe with disease progression.
format Online
Article
Text
id pubmed-9983837
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-99838372023-03-04 Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson’s disease Chung, Jae Woo Knight, Christopher A. Bower, Abigail E. Martello, Justin P. Jeka, John J. Burciu, Roxana G. PLoS One Research Article BACKGROUND: Much of our understanding of the deficits in force control in Parkinson’s disease (PD) relies on findings in the upper extremity. Currently, there is a paucity of data pertaining to the effect of PD on lower limb force control. OBJECTIVE: The purpose of this study was to concurrently evaluate upper- and lower-limb force control in early-stage PD and a group of age- and gender-matched healthy controls. METHODS: Twenty individuals with PD and twenty-one healthy older adults participated in this study. Participants performed two visually guided, submaximal (15% of maximum voluntary contractions) isometric force tasks: a pinch grip task and an ankle dorsiflexion task. PD were tested on their more affected side and after overnight withdrawal from antiparkinsonian medication. The tested side in controls was randomized. Differences in force control capacity were assessed by manipulating speed-based and variability-based task parameters. RESULTS: Compared with controls, PD demonstrated slower rates of force development and force relaxation during the foot task, and a slower rate of relaxation during the hand task. Force variability was similar across groups but greater in the foot than in the hand in both PD and controls. Lower limb rate control deficits were greater in PD with more severe symptoms based on the Hoehn and Yahr stage. CONCLUSIONS: Together, these results provide quantitative evidence of an impaired capacity in PD to produce submaximal and rapid force across multiple effectors. Moreover, results suggest that force control deficits in the lower limb may become more severe with disease progression. Public Library of Science 2023-03-03 /pmc/articles/PMC9983837/ /pubmed/36867628 http://dx.doi.org/10.1371/journal.pone.0282203 Text en © 2023 Chung et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Chung, Jae Woo
Knight, Christopher A.
Bower, Abigail E.
Martello, Justin P.
Jeka, John J.
Burciu, Roxana G.
Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson’s disease
title Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson’s disease
title_full Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson’s disease
title_fullStr Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson’s disease
title_full_unstemmed Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson’s disease
title_short Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson’s disease
title_sort rate control deficits during pinch grip and ankle dorsiflexion in early-stage parkinson’s disease
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983837/
https://www.ncbi.nlm.nih.gov/pubmed/36867628
http://dx.doi.org/10.1371/journal.pone.0282203
work_keys_str_mv AT chungjaewoo ratecontroldeficitsduringpinchgripandankledorsiflexioninearlystageparkinsonsdisease
AT knightchristophera ratecontroldeficitsduringpinchgripandankledorsiflexioninearlystageparkinsonsdisease
AT bowerabigaile ratecontroldeficitsduringpinchgripandankledorsiflexioninearlystageparkinsonsdisease
AT martellojustinp ratecontroldeficitsduringpinchgripandankledorsiflexioninearlystageparkinsonsdisease
AT jekajohnj ratecontroldeficitsduringpinchgripandankledorsiflexioninearlystageparkinsonsdisease
AT burciuroxanag ratecontroldeficitsduringpinchgripandankledorsiflexioninearlystageparkinsonsdisease