Cargando…
Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types
Protein kinases play a vital role in a wide range of cellular processes, and compounds that inhibit kinase activity emerging as a primary focus for targeted therapy development, especially in cancer. Consequently, efforts to characterize the behavior of kinases in response to inhibitor treatment, as...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983880/ https://www.ncbi.nlm.nih.gov/pubmed/36809237 http://dx.doi.org/10.1371/journal.pcbi.1010888 |
_version_ | 1784900635509915648 |
---|---|
author | Berginski, Matthew E. Joisa, Chinmaya U. Golitz, Brian T. Gomez, Shawn M. |
author_facet | Berginski, Matthew E. Joisa, Chinmaya U. Golitz, Brian T. Gomez, Shawn M. |
author_sort | Berginski, Matthew E. |
collection | PubMed |
description | Protein kinases play a vital role in a wide range of cellular processes, and compounds that inhibit kinase activity emerging as a primary focus for targeted therapy development, especially in cancer. Consequently, efforts to characterize the behavior of kinases in response to inhibitor treatment, as well as downstream cellular responses, have been performed at increasingly large scales. Previous work with smaller datasets have used baseline profiling of cell lines and limited kinome profiling data to attempt to predict small molecule effects on cell viability, but these efforts did not use multi-dose kinase profiles and achieved low accuracy with very limited external validation. This work focuses on two large-scale primary data types, kinase inhibitor profiles and gene expression, to predict the results of cell viability screening. We describe the process by which we combined these data sets, examined their properties in relation to cell viability and finally developed a set of computational models that achieve a reasonably high prediction accuracy (R(2) of 0.78 and RMSE of 0.154). Using these models, we identified a set of kinases, several of which are understudied, that are strongly influential in the cell viability prediction models. In addition, we also tested to see if a wider range of multiomics data sets could improve the model results and found that proteomic kinase inhibitor profiles were the single most informative data type. Finally, we validated a small subset of the model predictions in several triple-negative and HER2 positive breast cancer cell lines demonstrating that the model performs well with compounds and cell lines that were not included in the training data set. Overall, this result demonstrates that generic knowledge of the kinome is predictive of very specific cell phenotypes, and has the potential to be integrated into targeted therapy development pipelines. |
format | Online Article Text |
id | pubmed-9983880 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-99838802023-03-04 Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types Berginski, Matthew E. Joisa, Chinmaya U. Golitz, Brian T. Gomez, Shawn M. PLoS Comput Biol Research Article Protein kinases play a vital role in a wide range of cellular processes, and compounds that inhibit kinase activity emerging as a primary focus for targeted therapy development, especially in cancer. Consequently, efforts to characterize the behavior of kinases in response to inhibitor treatment, as well as downstream cellular responses, have been performed at increasingly large scales. Previous work with smaller datasets have used baseline profiling of cell lines and limited kinome profiling data to attempt to predict small molecule effects on cell viability, but these efforts did not use multi-dose kinase profiles and achieved low accuracy with very limited external validation. This work focuses on two large-scale primary data types, kinase inhibitor profiles and gene expression, to predict the results of cell viability screening. We describe the process by which we combined these data sets, examined their properties in relation to cell viability and finally developed a set of computational models that achieve a reasonably high prediction accuracy (R(2) of 0.78 and RMSE of 0.154). Using these models, we identified a set of kinases, several of which are understudied, that are strongly influential in the cell viability prediction models. In addition, we also tested to see if a wider range of multiomics data sets could improve the model results and found that proteomic kinase inhibitor profiles were the single most informative data type. Finally, we validated a small subset of the model predictions in several triple-negative and HER2 positive breast cancer cell lines demonstrating that the model performs well with compounds and cell lines that were not included in the training data set. Overall, this result demonstrates that generic knowledge of the kinome is predictive of very specific cell phenotypes, and has the potential to be integrated into targeted therapy development pipelines. Public Library of Science 2023-02-21 /pmc/articles/PMC9983880/ /pubmed/36809237 http://dx.doi.org/10.1371/journal.pcbi.1010888 Text en © 2023 Berginski et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Berginski, Matthew E. Joisa, Chinmaya U. Golitz, Brian T. Gomez, Shawn M. Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types |
title | Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types |
title_full | Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types |
title_fullStr | Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types |
title_full_unstemmed | Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types |
title_short | Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types |
title_sort | kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983880/ https://www.ncbi.nlm.nih.gov/pubmed/36809237 http://dx.doi.org/10.1371/journal.pcbi.1010888 |
work_keys_str_mv | AT berginskimatthewe kinomeinhibitionstatesandmultiomicsdataenablepredictionofcellviabilityindiversecancertypes AT joisachinmayau kinomeinhibitionstatesandmultiomicsdataenablepredictionofcellviabilityindiversecancertypes AT golitzbriant kinomeinhibitionstatesandmultiomicsdataenablepredictionofcellviabilityindiversecancertypes AT gomezshawnm kinomeinhibitionstatesandmultiomicsdataenablepredictionofcellviabilityindiversecancertypes |