Cargando…

Bayesian Statistics for Medical Devices: Progress Since 2010

The use of Bayesian statistics to support regulatory evaluation of medical devices began in the late 1990s. We review the literature, focusing on recent developments of Bayesian methods, including hierarchical modeling of studies and subgroups, borrowing strength from prior data, effective sample si...

Descripción completa

Detalles Bibliográficos
Autores principales: Campbell, Gregory, Irony, Telba, Pennello, Gene, Thompson, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984131/
https://www.ncbi.nlm.nih.gov/pubmed/36869194
http://dx.doi.org/10.1007/s43441-022-00495-w
Descripción
Sumario:The use of Bayesian statistics to support regulatory evaluation of medical devices began in the late 1990s. We review the literature, focusing on recent developments of Bayesian methods, including hierarchical modeling of studies and subgroups, borrowing strength from prior data, effective sample size, Bayesian adaptive designs, pediatric extrapolation, benefit-risk decision analysis, use of real-world evidence, and diagnostic device evaluation. We illustrate how these developments were utilized in recent medical device evaluations. In Supplementary Material, we provide a list of medical devices for which Bayesian statistics were used to support approval by the US Food and Drug Administration (FDA), including those since 2010, the year the FDA published their guidance on Bayesian statistics for medical devices. We conclude with a discussion of current and future challenges and opportunities for Bayesian statistics, including artificial intelligence/machine learning (AI/ML) Bayesian modeling, uncertainty quantification, Bayesian approaches using propensity scores, and computational challenges for high dimensional data and models. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s43441-022-00495-w.