Cargando…
Thermal runaway evaluation on batch polyvinyl acetate emulsion polymerization from calorimetric measurement
Emulsion polymerization is the most applied method in the vinyl acetate monomer (VAM)–polyvinyl acetate (PVAc) process. However, the flammable property and unexpected bulk polymerization for the reactant and product may occur in the batch reactor or storage tank. VAM is reactive enough to decompose...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984291/ https://www.ncbi.nlm.nih.gov/pubmed/37223664 http://dx.doi.org/10.1007/s10973-023-11994-9 |
Sumario: | Emulsion polymerization is the most applied method in the vinyl acetate monomer (VAM)–polyvinyl acetate (PVAc) process. However, the flammable property and unexpected bulk polymerization for the reactant and product may occur in the batch reactor or storage tank. VAM is reactive enough to decompose readily into free radicals and then, initiate the polymerization, which may contribute to heat accumulation due to the monomer, initiator, and solvent mixtures. This study attempts to analyze the exothermic reaction and compare the thermal runaway potential for various VAM solutions during PVAc polymerizations. Summarily, 50%, 70%, and 100% of VAM solutions reacting with 2,2’–azobis(2-methylpropionitrile) readily increase the self-heating rate with their concentration from adiabatic calorimetric tests. Furthermore, kinetic parameters of 50, 70, and 100 mass% VAM solutions were evaluated to elucidate the self-heating model associated with thermal analysis and to determine heat production mechanisms that are practical to proactive safety protocol for the PVAc emulsion process. |
---|