Cargando…
High-frequency spin torque oscillation in orthogonal magnetization disks with strong biquadratic magnetic coupling
In this study, we numerically investigate the spin transfer torque oscillation (STO) in a magnetic orthogonal configuration by introducing a strong biquadratic magnetic coupling. The orthogonal configuration consists of top and bottom layers with in-plane and perpendicular magnetic anisotropy sandwi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984381/ https://www.ncbi.nlm.nih.gov/pubmed/36869133 http://dx.doi.org/10.1038/s41598-023-30838-y |
Sumario: | In this study, we numerically investigate the spin transfer torque oscillation (STO) in a magnetic orthogonal configuration by introducing a strong biquadratic magnetic coupling. The orthogonal configuration consists of top and bottom layers with in-plane and perpendicular magnetic anisotropy sandwiching a nonmagnetic spacer. The advantage of an orthogonal configuration is the high efficiency of spin transfer torque leading a high STO frequency; however, maintaining the STO in a wide range of electric current is challenging. By introducing biquadratic magnetic coupling into the orthogonal structure of FePt/spacer/Co(90)Fe(10), Ni(80)Fe(20) or Ni, we were able to expand the electric current region in which the stable STO is realized, resulting in a relatively high STO frequency. For example, approximately 50 GHz can be achieved in an Ni layer at a current density of 5.5 × 10(7) A/cm(2). In addition, we investigated two types of initial magnetic state: out-of-plane and in-plane magnetic saturation; this leads to a vortex and an in-plane magnetic domain structure after relaxation, respectively. The transient time before the stable STO was reduced to between 0.5 and 1.8 ns by changing the initial state from out-of-plane to in-plane. |
---|