Cargando…
Consecutive multiscale feature learning-based image classification model
Extracting useful features at multiple scales is a crucial task in computer vision. The emergence of deep-learning techniques and the advancements in convolutional neural networks (CNNs) have facilitated effective multiscale feature extraction that results in stable performance improvements in numer...
Autores principales: | Olimov, Bekhzod, Subramanian, Barathi, Ugli, Rakhmonov Akhrorjon Akhmadjon, Kim, Jea-Soo, Kim, Jeonghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984458/ https://www.ncbi.nlm.nih.gov/pubmed/36869132 http://dx.doi.org/10.1038/s41598-023-30480-8 |
Ejemplares similares
-
An integrated mediapipe-optimized GRU model for Indian sign language recognition
por: Subramanian, Barathi, et al.
Publicado: (2022) -
Multiscale Feature-Learning with a Unified Model for Hyperspectral Image Classification
por: Arshad, Tahir, et al.
Publicado: (2023) -
Multiscale High-Level Feature Fusion for Histopathological Image Classification
por: Lai, ZhiFei, et al.
Publicado: (2017) -
Multiscale Feature Fusion for Skin Lesion Classification
por: Wang, Gang, et al.
Publicado: (2023) -
An Adaptive Learning Model for Multiscale Texture Features in Polyp Classification via Computed Tomographic Colonography
por: Cao, Weiguo, et al.
Publicado: (2022)