Cargando…
Feature augmentation based on information fusion rectification for few-shot image classification
In the issue of few-shot image classification, due to lack of sufficient data, directly training the model will lead to overfitting. In order to alleviate this problem, more and more methods focus on non-parametric data augmentation, which uses the information of known data to construct non-parametr...
Autores principales: | Wang, Hang, Tian, Shengzhao, Fu, Yan, Zhou, Junlin, Liu, Jingfa, Chen, Duanbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984463/ https://www.ncbi.nlm.nih.gov/pubmed/36869163 http://dx.doi.org/10.1038/s41598-023-30398-1 |
Ejemplares similares
-
Few-shot learning for joint model in underwater acoustic target recognition
por: Tian, Shengzhao, et al.
Publicado: (2023) -
Feature fusion network based on few-shot fine-grained classification
por: Yang, Yajie, et al.
Publicado: (2023) -
A Multi-Layer Feature Fusion Method for Few-Shot Image Classification
por: Gomes, Jacó C., et al.
Publicado: (2023) -
Deep convolution stack for waveform in underwater acoustic target recognition
por: Tian, Shengzhao, et al.
Publicado: (2021) -
Few-shot image classification algorithm based on attention mechanism and weight fusion
por: Meng, Xiaoxia, et al.
Publicado: (2023)