Cargando…
Growth anisotropy of the extracellular matrix shapes a developing organ
Final organ size and shape result from volume expansion by growth and shape changes by contractility. Complex morphologies can also arise from differences in growth rate between tissues. We address here how differential growth guides the morphogenesis of the growing Drosophila wing imaginal disc. We...
Autores principales: | Harmansa, Stefan, Erlich, Alexander, Eloy, Christophe, Zurlo, Giuseppe, Lecuit, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984492/ https://www.ncbi.nlm.nih.gov/pubmed/36869053 http://dx.doi.org/10.1038/s41467-023-36739-y |
Ejemplares similares
-
Formation of polarized contractile interfaces by self-organized Toll-8/Cirl GPCR asymmetry
por: Lavalou, Jules, et al.
Publicado: (2021) -
Electrospun acellular scaffolds for mimicking the natural anisotropy of the extracellular matrix
por: Nagam Hanumantharao, Samerender, et al.
Publicado: (2019) -
How the extracellular matrix shapes neural development
por: Long, Katherine R., et al.
Publicado: (2019) -
Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions
por: Park, Danielle, et al.
Publicado: (2019) -
Shaping Synapses by the Neural Extracellular Matrix
por: Ferrer-Ferrer, Maura, et al.
Publicado: (2018)