Cargando…

Resourcelized conversion of livestock manure to porous cage microsphere for eliminating emerging contaminants under peroxymonosulfate trigger

Pollution and resource waste caused by the improper disposal of livestock manure, and the threat from the release of emerging contaminants (ECs), are global challenges. Herein, we address the both problems simultaneously by the resourcelized conversion of chicken manure into porous Co@CM cage micros...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Yuhao, Xie, Zhiju, Hu, Chun, Lyu, Lai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984556/
https://www.ncbi.nlm.nih.gov/pubmed/36879805
http://dx.doi.org/10.1016/j.isci.2023.106139
Descripción
Sumario:Pollution and resource waste caused by the improper disposal of livestock manure, and the threat from the release of emerging contaminants (ECs), are global challenges. Herein, we address the both problems simultaneously by the resourcelized conversion of chicken manure into porous Co@CM cage microspheres (CCM-CMSs) for ECs degradation through the graphitization process and Co-doping modification step. CCM-CMSs exhibit excellent performance for ECs degradation and actual wastewater purification under peroxymonosulfate (PMS) initiation, and show adaptability to complex water environments. The ultra-high activity can maintain after continuous operation over 2160 cycles. The formation of C-O-Co bond bridge structure on the catalyst surface caused an unbalanced electron distribution, which allows PMS to trigger the sustainable electron donation of ECs and electron gain of dissolved oxygen processes, becoming the key to the excellent performance of CCM-CMSs. This process significantly reduces the resource and energy consumption of the catalyst throughout the life cycle of production and application.