Cargando…
Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging—State-of-the-Art and Challenges
Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast for clinical diagnoses and research which underpin many recent breakthroughs in medicine and biology. The post-processing of reconstructed MR images is often automated for incorporation into MRI scanners by the manufacturers an...
Autores principales: | Chen, Zhaolin, Pawar, Kamlesh, Ekanayake, Mevan, Pain, Cameron, Zhong, Shenjun, Egan, Gary F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984670/ https://www.ncbi.nlm.nih.gov/pubmed/36323914 http://dx.doi.org/10.1007/s10278-022-00721-9 |
Ejemplares similares
-
Deep learning-based image reconstruction and post-processing methods in positron emission tomography for low-dose imaging and resolution enhancement
por: Pain, Cameron Dennis, et al.
Publicado: (2022) -
Auto-encoded Latent Representations of White Matter Streamlines for Quantitative Distance Analysis
por: Zhong, Shenjun, et al.
Publicado: (2022) -
Sports Health Magnetic Resonance Imaging Challenge
por: Howell, Gary A., et al.
Publicado: (2010) -
Improving portable low-field MRI image quality through image-to-image translation using paired low- and high-field images
por: Islam, Kh Tohidul, et al.
Publicado: (2023) -
Functional magnetic resonance imaging in oncology: state of the art
por: Guimaraes, Marcos Duarte, et al.
Publicado: (2014)