Cargando…
Efficient inference of synaptic plasticity rule with Gaussian process regression
Finding the form of synaptic plasticity is critical to understanding its functions underlying learning and memory. We investigated an efficient method to infer synaptic plasticity rules in various experimental settings. We considered biologically plausible models fitting a wide range of in-vitro stu...
Autores principales: | Chen, Shirui, Yang, Qixin, Lim, Sukbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985048/ https://www.ncbi.nlm.nih.gov/pubmed/36879810 http://dx.doi.org/10.1016/j.isci.2023.106182 |
Ejemplares similares
-
Splitting Gaussian processes for computationally-efficient regression
por: Terry, Nick, et al.
Publicado: (2021) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Efficient Neutrino Oscillation Parameter Inference with Gaussian Processes
por: Nayak, Bannanje Nitish
Publicado: (2019) -
Heteroscedastic sparse Gaussian process regression-based stochastic material model for plastic structural analysis
por: Chen, Baixi, et al.
Publicado: (2022) -
Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules
por: Sacramento, João, et al.
Publicado: (2015)