Cargando…

A Review of Quartz Crystal Microbalance for Chemical and Biological Sensing Applications

Humans are fundamentally interested in monitoring and understanding interactions that occur in and around our bodies. Biological interactions within the body determine our physical condition and can be used to improve medical treatments and develop new drugs. Daily life involves contact with numerou...

Descripción completa

Detalles Bibliográficos
Autores principales: Alanazi, Nadyah, Almutairi, Maram, Alodhayb, Abdullah N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985094/
https://www.ncbi.nlm.nih.gov/pubmed/36908332
http://dx.doi.org/10.1007/s11220-023-00413-w
Descripción
Sumario:Humans are fundamentally interested in monitoring and understanding interactions that occur in and around our bodies. Biological interactions within the body determine our physical condition and can be used to improve medical treatments and develop new drugs. Daily life involves contact with numerous chemicals, ranging from household elements, naturally occurring scents from common plants and animals, and industrial agents. Many chemicals cause adverse health and environmental effects and require regulation to prevent pollution. Chemical detection is critically important for food and environmental quality control efforts, medical diagnostics, and detection of explosives. Thus, sensitive devices are needed for detecting and discriminating chemical and biological samples. Compared to other sensing devices, the Quartz Crystal Microbalance (QCM) is well-established and has been considered and sufficiently sensitive for detecting molecules, chemicals, polymers, and biological assemblies. Due to its simplicity and low cost, the QCM sensor has potential applications in analytical chemistry, surface chemistry, biochemistry, environmental science, and other disciplines. QCM detection measures resonate frequency changes generated by the quartz crystal sensor when covered with a thin film or liquid. The quartz crystal is sandwiched between two metal (typically gold) electrodes. Functionalizing the electrode’s surface further enhances frequency change detection through to interactions between the sensor and the targeted material. These sensors are sensitive to high frequencies and can recognize ultrasmall masses. This review will cover advancements in QCM sensor technologies, highlighting in-sensor and real-time analysis. QCM-based sensor function is dictated by the coating material. We present various high-sensitivity coating techniques that use this novel sensor design. Then, we briefly review available measurement parameters and technological interventions that will inform future QCM research. Lastly, we examine QCM’s theory and application to enhance our understanding of relevant electrical components and concepts.