Cargando…

Identification of the shared genes and immune signatures between systemic lupus erythematosus and idiopathic pulmonary fibrosis

BACKGROUND: Systemic lupus erythematosus (SLE) is an autoimmune disorder which could lead to inflammation and fibrosis in various organs. Pulmonary fibrosis is a severe complication in patients with SLE. Nonetheless, SLE-derived pulmonary fibrosis has unknown pathogenesis. Of pulmonary fibrosis, Idi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Sheng, Tang, Youzhou, Zhang, Ying, Cao, Qingtai, Xu, Linyong, Zhuang, Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985223/
https://www.ncbi.nlm.nih.gov/pubmed/36871016
http://dx.doi.org/10.1186/s41065-023-00270-3
Descripción
Sumario:BACKGROUND: Systemic lupus erythematosus (SLE) is an autoimmune disorder which could lead to inflammation and fibrosis in various organs. Pulmonary fibrosis is a severe complication in patients with SLE. Nonetheless, SLE-derived pulmonary fibrosis has unknown pathogenesis. Of pulmonary fibrosis, Idiopathic pulmonary fibrosis (IPF) is a typicality and deadly form. Aiming to investigate the gene signatures and possible immune mechanisms in SLE-derived pulmonary fibrosis, we explored common characters between SLE and IPF from Gene Expression Omnibus (GEO) database. RESULTS: We employed the weighted gene co-expression network analysis (WGCNA) to identify the shared genes. Two modules were significantly identified in both SLE and IPF, respectively. The overlapped 40 genes were selected out for further analysis. The GO enrichment analysis of shared genes between SLE and IPF was performed with ClueGO and indicated that p38MAPK cascade, a key inflammation response pathway, may be a common feature in both SLE and IPF. The validation datasets also illustrated this point. The enrichment analysis of common miRNAs was obtained from the Human microRNA Disease Database (HMDD) and the enrichment analysis with the DIANA tools also indicated that MAPK pathways’ role in the pathogenesis of SLE and IPF. The target genes of these common miRNAs were identified by the TargetScan7.2 and a common miRNAs-mRNAs network was constructed with the overlapped genes in target and shared genes to show the regulated target of SLE-derived pulmonary fibrosis. The result of CIBERSORT showed decreased regulatory T cells (Tregs), naïve CD4+ T cells and rest mast cells but increased activated NK cells and activated mast cells in both SLE and IPF. The target genes of cyclophosphamide were also obtained from the Drug Repurposing Hub and had an interaction with the common gene PTGS2 predicted with protein-protein interaction (PPI) and molecular docking, indicating its potential treatment effect. CONCLUSIONS: This study originally uncovered the MAPK pathway, and the infiltration of some immune-cell subsets might be pivotal factors for pulmonary fibrosis complication in SLE, which could be used as potentially therapeutic targets. The cyclophosphamide may treat SLE-derived pulmonary fibrosis through interaction with PTGS2, which could be activated by p38MAPK. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41065-023-00270-3.