Cargando…

Integrated analysis identifies oxidative stress-related lncRNAs associated with progression and prognosis in colorectal cancer

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers in the world. Oxidative stress reactions have been reportedly associated with oncogenesis and tumor progression. By analyzing mRNA expression data and clinical information from The Cancer Genome Atlas (TCGA), we aimed to construct...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Rui, Wei, Jun-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985255/
https://www.ncbi.nlm.nih.gov/pubmed/36869292
http://dx.doi.org/10.1186/s12859-023-05203-5
Descripción
Sumario:BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers in the world. Oxidative stress reactions have been reportedly associated with oncogenesis and tumor progression. By analyzing mRNA expression data and clinical information from The Cancer Genome Atlas (TCGA), we aimed to construct an oxidative stress-related long noncoding RNA (lncRNA) risk model and identify oxidative stress-related biomarkers to improve the prognosis and treatment of CRC. RESULTS: Differentially expressed oxidative stress-related genes (DEOSGs) and oxidative stress-related lncRNAs were identified by using bioinformatics tools. An oxidative stress-related lncRNA risk model was constructed based on 9 lncRNAs (AC034213.1, AC008124.1, LINC01836, USP30-AS1, AP003555.1, AC083906.3, AC008494.3, AC009549.1, and AP006621.3) by least absolute shrinkage and selection operator (LASSO) analysis. The patients were then divided into high- and low-risk groups based on the median risk score. The high-risk group had a significantly worse overall survival (OS) (p < 0.001). Receiver operating characteristic (ROC) and calibration curves displayed the favorable predictive performance of the risk model. The nomogram successfully quantified the contribution of each metric to survival, and the concordance index and calibration plots demonstrated its excellent predictive capacity. Notably, different risk subgroups showed significant differences in terms of their metabolic activity, mutation landscape, immune microenvironment and drug sensitivity. Specifically, differences in the immune microenvironment implied that CRC patients in certain subgroups might be more responsive to immune checkpoint inhibitors. CONCLUSIONS: Oxidative stress-related lncRNAs can predict the prognosis of CRC patients, which provides new insight for future immunotherapies based on potential oxidative stress targets. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-023-05203-5.