Cargando…

Comparison of evoked potentials across four related developmental encephalopathies

BACKGROUND: Developing biomarkers is a priority for drug development for all conditions, but vital in the rare neurodevelopmental disorders where sensitive outcome measures are lacking. We have previously demonstrated the feasibility and tracking of evoked potentials to disease severity in Rett synd...

Descripción completa

Detalles Bibliográficos
Autores principales: Saby, Joni N., Peters, Sarika U., Benke, Timothy A., Standridge, Shannon M., Swanson, Lindsay C., Lieberman, David N., Olson, Heather E., Key, Alexandra P., Percy, Alan K., Neul, Jeffrey L., Nelson, Charles A., Roberts, Timothy P. L., Marsh, Eric D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985257/
https://www.ncbi.nlm.nih.gov/pubmed/36870948
http://dx.doi.org/10.1186/s11689-023-09479-9
Descripción
Sumario:BACKGROUND: Developing biomarkers is a priority for drug development for all conditions, but vital in the rare neurodevelopmental disorders where sensitive outcome measures are lacking. We have previously demonstrated the feasibility and tracking of evoked potentials to disease severity in Rett syndrome and CDKL5 deficiency disorder. The aim of the current study is to characterize evoked potentials in two related developmental encephalopathies, MECP2 duplication syndrome and FOXG1 syndrome, and compare across all four groups to better understand the potential of these measures to serve as biomarkers of clinical severity for the developmental encephalopathies. METHODS: Visual and auditory evoked potentials were acquired from participants with MECP2 duplication syndrome and FOXG1 syndrome across five sites of the Rett Syndrome and Rett-Related Disorders Natural History Study. A group of age-matched individuals (mean = 7.8 years; range = 1–17) with Rett syndrome, CDKL5 deficiency disorder, and typically-developing participants served as a comparison group. The analysis focused on group-level differences as well as associations between the evoked potentials and measures of clinical severity from the Natural History Study. RESULTS: As reported previously, group-level comparisons revealed attenuated visual evoked potentials (VEPs) in participants with Rett syndrome (n = 43) and CDKL5 deficiency disorder (n = 16) compared to typically-developing participants. VEP amplitude was also attenuated in participants with MECP2 duplication syndrome (n = 15) compared to the typically-developing group. VEP amplitude correlated with clinical severity for Rett syndrome and FOXG1 syndrome (n = 5). Auditory evoked potential (AEP) amplitude did not differ between groups, but AEP latency was prolonged in individuals with MECP2 duplication syndrome (n = 14) and FOXG1 syndrome (n = 6) compared to individuals with Rett syndrome (n = 51) and CDKL5 deficiency disorder (n = 14). AEP amplitude correlated with severity in Rett syndrome and CDKL5 deficiency disorder. AEP latency correlated with severity in CDKL5 deficiency disorder, MECP2 duplication syndrome, and FOXG1 syndrome. CONCLUSIONS: There are consistent abnormalities in the evoked potentials in four developmental encephalopathies some of which correlate with clinical severity. While there are consistent changes amongst these four disorders, there are also condition specific findings that need to be further refined and validated. Overall, these results provide a foundation for further refinement of these measures for use in future clinical trials for these conditions.