Cargando…

De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters

Single-cell RNA sequencing (scRNA-seq) technology provides an unprecedented opportunity to understand gene functions and interactions at single-cell resolution. While computational tools for scRNA-seq data analysis to decipher differential gene expression profiles and differential pathway expression...

Descripción completa

Detalles Bibliográficos
Autores principales: Oubounyt, Mhaned, Elkjaer, Maria L, Laske, Tanja, Grønning, Alexander G B, Moeller, Marcus J, Baumbach, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985332/
https://www.ncbi.nlm.nih.gov/pubmed/36879901
http://dx.doi.org/10.1093/nargab/lqad018
_version_ 1784900929965785088
author Oubounyt, Mhaned
Elkjaer, Maria L
Laske, Tanja
Grønning, Alexander G B
Moeller, Marcus J
Baumbach, Jan
author_facet Oubounyt, Mhaned
Elkjaer, Maria L
Laske, Tanja
Grønning, Alexander G B
Moeller, Marcus J
Baumbach, Jan
author_sort Oubounyt, Mhaned
collection PubMed
description Single-cell RNA sequencing (scRNA-seq) technology provides an unprecedented opportunity to understand gene functions and interactions at single-cell resolution. While computational tools for scRNA-seq data analysis to decipher differential gene expression profiles and differential pathway expression exist, we still lack methods to learn differential regulatory disease mechanisms directly from the single-cell data. Here, we provide a new methodology, named DiNiro, to unravel such mechanisms de novo and report them as small, easily interpretable transcriptional regulatory network modules. We demonstrate that DiNiro is able to uncover novel, relevant, and deep mechanistic models that not just predict but explain differential cellular gene expression programs. DiNiro is available at https://exbio.wzw.tum.de/diniro/.
format Online
Article
Text
id pubmed-9985332
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-99853322023-03-05 De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters Oubounyt, Mhaned Elkjaer, Maria L Laske, Tanja Grønning, Alexander G B Moeller, Marcus J Baumbach, Jan NAR Genom Bioinform Standard Article Single-cell RNA sequencing (scRNA-seq) technology provides an unprecedented opportunity to understand gene functions and interactions at single-cell resolution. While computational tools for scRNA-seq data analysis to decipher differential gene expression profiles and differential pathway expression exist, we still lack methods to learn differential regulatory disease mechanisms directly from the single-cell data. Here, we provide a new methodology, named DiNiro, to unravel such mechanisms de novo and report them as small, easily interpretable transcriptional regulatory network modules. We demonstrate that DiNiro is able to uncover novel, relevant, and deep mechanistic models that not just predict but explain differential cellular gene expression programs. DiNiro is available at https://exbio.wzw.tum.de/diniro/. Oxford University Press 2023-03-03 /pmc/articles/PMC9985332/ /pubmed/36879901 http://dx.doi.org/10.1093/nargab/lqad018 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Standard Article
Oubounyt, Mhaned
Elkjaer, Maria L
Laske, Tanja
Grønning, Alexander G B
Moeller, Marcus J
Baumbach, Jan
De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters
title De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters
title_full De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters
title_fullStr De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters
title_full_unstemmed De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters
title_short De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters
title_sort de-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters
topic Standard Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985332/
https://www.ncbi.nlm.nih.gov/pubmed/36879901
http://dx.doi.org/10.1093/nargab/lqad018
work_keys_str_mv AT oubounytmhaned denovoreconstructionandidentificationoftranscriptionalgeneregulatorynetworkmodulesdifferentiatingsinglecellclusters
AT elkjaermarial denovoreconstructionandidentificationoftranscriptionalgeneregulatorynetworkmodulesdifferentiatingsinglecellclusters
AT lasketanja denovoreconstructionandidentificationoftranscriptionalgeneregulatorynetworkmodulesdifferentiatingsinglecellclusters
AT grønningalexandergb denovoreconstructionandidentificationoftranscriptionalgeneregulatorynetworkmodulesdifferentiatingsinglecellclusters
AT moellermarcusj denovoreconstructionandidentificationoftranscriptionalgeneregulatorynetworkmodulesdifferentiatingsinglecellclusters
AT baumbachjan denovoreconstructionandidentificationoftranscriptionalgeneregulatorynetworkmodulesdifferentiatingsinglecellclusters