Cargando…
Single-cell gene set enrichment analysis and transfer learning for functional annotation of scRNA-seq data
Although an essential step, cell functional annotation often proves particularly challenging from single-cell transcriptional data. Several methods have been developed to accomplish this task. However, in most cases, these rely on techniques initially developed for bulk RNA sequencing or simply make...
Autores principales: | Franchini, Melania, Pellecchia, Simona, Viscido, Gaetano, Gambardella, Gennaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985338/ https://www.ncbi.nlm.nih.gov/pubmed/36879897 http://dx.doi.org/10.1093/nargab/lqad024 |
Ejemplares similares
-
Predicting drug response from single-cell expression profiles of tumours
por: Pellecchia, Simona, et al.
Publicado: (2023) -
Automated methods for cell type annotation on scRNA-seq data
por: Pasquini, Giovanni, et al.
Publicado: (2021) -
GSAn: an alternative to enrichment analysis for annotating gene sets
por: Ayllon-Benitez, Aaron, et al.
Publicado: (2020) -
scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization
por: Yan, Xuhua, et al.
Publicado: (2023) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023)