Cargando…
Three-dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on cone-beam computed tomography images
OBJECTIVE: To qualitatively and quantitatively assess integrated segmentation of three convolutional neural network (CNN) models for the creation of a maxillary virtual patient (MVP) from cone-beam computed tomography (CBCT) images. MATERIALS AND METHODS: A dataset of 40 CBCT scans acquired with dif...
Autores principales: | Nogueira-Reis, Fernanda, Morgan, Nermin, Nomidis, Stefanos, Van Gerven, Adriaan, Oliveira-Santos, Nicolly, Jacobs, Reinhilde, Tabchoury, Cinthia Pereira Machado |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985582/ https://www.ncbi.nlm.nih.gov/pubmed/36114907 http://dx.doi.org/10.1007/s00784-022-04708-2 |
Ejemplares similares
-
Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images
por: Morgan, Nermin, et al.
Publicado: (2022) -
Does cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images
por: Guerrero, Maria Eugenia, et al.
Publicado: (2014) -
Automated segmentation of the mandibular canal and its anterior loop by deep learning
por: Oliveira-Santos, Nicolly, et al.
Publicado: (2023) -
Artificial Intelligence (AI)-Driven Molar Angulation Measurements to Predict Third Molar Eruption on Panoramic Radiographs
por: Vranckx, Myrthel, et al.
Publicado: (2020) -
Long‐term outcome of autogenously transplanted maxillary canines
por: Grisar, Koenraad, et al.
Publicado: (2019)