Cargando…
Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete
Adding hooked industrial steel fibers (ISF) to concrete boosts its tensile and flexural strength. However, the understanding of ISF’s influence on the compressive strength (CS) behavior of concrete is still questioned by the scientific society. The presented paper aims to use machine learning (ML) a...
Autores principales: | Pakzad, Seyed Soroush, Roshan, Naeim, Ghalehnovi, Mansour |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985652/ https://www.ncbi.nlm.nih.gov/pubmed/36871074 http://dx.doi.org/10.1038/s41598-023-30606-y |
Ejemplares similares
-
Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques
por: Li, Yongjian, et al.
Publicado: (2022) -
Deformation and Compressive Strength of Steel Fiber Reinforced MgO Concrete
por: Jiang, Feifei, et al.
Publicado: (2019) -
Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms
por: Khan, Kaffayatullah, et al.
Publicado: (2022) -
Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete
por: Dai, Li, et al.
Publicado: (2022) -
Experimental Investigation on the Shear Behaviour of Stud-Bolt Connectors of Steel-Concrete-Steel Fibre-Reinforced Recycled Aggregates Sandwich Panels
por: Karimipour, Arash, et al.
Publicado: (2021)