Cargando…
Deep Learning Techniques for Ear Diseases Based on Segmentation of the Normal Tympanic Membrane
OBJECTIVES: Otitis media is a common infection worldwide. Owing to the limited number of ear specialists and rapid development of telemedicine, several trials have been conducted to develop novel diagnostic strategies to improve the diagnostic accuracy and screening of patients with otologic disease...
Autores principales: | Park, Yong Soon, Jeon, Jun Ho, Kong, Tae Hoon, Chung, Tae Yun, Seo, Young Joon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Otorhinolaryngology-Head and Neck Surgery
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985991/ https://www.ncbi.nlm.nih.gov/pubmed/36330706 http://dx.doi.org/10.21053/ceo.2022.00675 |
Ejemplares similares
-
The impact of tympanic membrane perforations on middle ear transfer function
por: Bevis, Nicholas, et al.
Publicado: (2021) -
Experimental measurement of tympanic membrane response for finite element model validation of a human middle ear
por: Ahn, Tae-Soo, et al.
Publicado: (2013) -
Determinants of Conductive Hearing Loss in Tympanic Membrane Perforation
por: Park, Hanaro, et al.
Publicado: (2015) -
Feasibility of the Machine Learning Network to Diagnose Tympanic Membrane Lesions without Coding Experience
por: Byun, Hayoung, et al.
Publicado: (2022) -
High-Speed Holographic Shape and Full-Field Displacement Measurements of the Tympanic Membrane in Normal and Experimentally Simulated Pathological Ears
por: Tang, Haimi, et al.
Publicado: (2019)