Cargando…
A Bayesian network predicting survival of cervical cancer patients—Based on surveillance, epidemiology, and end results
This study aimed to build a comprehensive model for predicting the overall survival (OS) of cervical cancer patients who received standard treatments and to build a series of new stages based on the International Federation of Gynecologists and Obstetricians (FIGO) stages for better such predictions...
Autores principales: | Liu, Guangcong, Yang, Zhuo, Wang, Danbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986069/ https://www.ncbi.nlm.nih.gov/pubmed/36285478 http://dx.doi.org/10.1111/cas.15624 |
Ejemplares similares
-
Survival analysis of extrahepatic cholangiocarcinoma based on surveillance, epidemiology, and end results database
por: Ali, Hassam, et al.
Publicado: (2023) -
Long-Term Survival in Patients with Cancers: Surveillance, epidemiology and end results-based analysis
por: Sakr, Rokia A., et al.
Publicado: (2023) -
Individual-patient prediction of meningioma malignancy and survival using the Surveillance, Epidemiology, and End Results database
por: Moreau, Jeremy T., et al.
Publicado: (2020) -
Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis
por: Yan, Lizhao, et al.
Publicado: (2022) -
Nomogram for predicting cancer-specific survival in undifferentiated pleomorphic sarcoma: A Surveillance, Epidemiology, and End Results -based study
por: Xu, Fengshuo, et al.
Publicado: (2021)