Cargando…

Assessment of effective reactive power reserve in power system networks under uncertainty applying coronavirus herd immunity optimizer (CHIO) for operation simulation

The Reactive Power Reserve (RPR) is a very important indicator for voltage stability and is sensitive to the operating conditions of power systems. Thorough understanding of RPR, specifically Effective Reactive Reserve (ERR) under intermittent Wind Power (WP) and uncertain demand is essential and ke...

Descripción completa

Detalles Bibliográficos
Autores principales: Rani, Nibha, Malakar, Tanmoy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986139/
http://dx.doi.org/10.1016/j.epsr.2023.109267
Descripción
Sumario:The Reactive Power Reserve (RPR) is a very important indicator for voltage stability and is sensitive to the operating conditions of power systems. Thorough understanding of RPR, specifically Effective Reactive Reserve (ERR) under intermittent Wind Power (WP) and uncertain demand is essential and key focus of this research. Hence, a stochastic multivariate ERR assessment and optimization problem is introduced here. The proposed problem is solved in three stages: modeling of multivariate uncertainty, studying the stochastic behavior of ERR and optimizing ERR. The volatilities associated with WP generation and consumer demand are modeled explicitly, and their probability distribution function is discretized to accommodate structural uncertainty. A combined load modeling approach is introduced and extended further to accommodate multi-variability. The impact of these uncertainties on ERR is assessed thoroughly on modified IEEE 30 and modified Indian 62 bus system. A non-linear dynamic stochastic optimization problem is formulated to maximize the expected value of ERR and is solved using ‘Coronavirus Herd Immunity Optimizer (CHIO)’. The impact of the proposed strategy on stability indices like the L-index, Proximity Indicator (PI) are analyzed through various case studies. Further, the effectiveness of the proposed approach is also compared with the existing mean value approach. Additionally, the performance of CHIO is confirmed through exhaustive case studies and comparisons.