Cargando…

Punctuated growth of InAs quantum dashes-in-a-well for enhanced 2-μm emission

InAs quantum dashes (Qdash) engineered to emit near 2 μm are envisioned to be promising quantum emitters for next-generation technologies in sensing and communications. In this study, we explore the effect of punctuated growth (PG) on the structure and optical properties of InP-based InAs Qdashes em...

Descripción completa

Detalles Bibliográficos
Autores principales: Chu, R. J., Kim, Y., Woo, S. W., Choi, W. J., Jung, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986172/
https://www.ncbi.nlm.nih.gov/pubmed/36872401
http://dx.doi.org/10.1186/s11671-023-03810-y
Descripción
Sumario:InAs quantum dashes (Qdash) engineered to emit near 2 μm are envisioned to be promising quantum emitters for next-generation technologies in sensing and communications. In this study, we explore the effect of punctuated growth (PG) on the structure and optical properties of InP-based InAs Qdashes emitting near the 2-μm wavelength. Morphological analysis revealed that PG led to an improvement in in-plane size uniformity and increases in average height and height distribution. A 2 × boost in photoluminescence intensity was observed, which we attribute to improved lateral dimensions and structural stabilization. PG encouraged formation of taller Qdashes while photoluminescence measurements revealed a blue-shift in the peak wavelength. We proposed that the blue-shift originates from the thinner quantum well cap and decreased distance between the Qdash and InAlGaAs barrier. This study on the punctuated growth of large InAs Qdashes is a step toward realizing bright, tunable, and broadband sources for 2-μm communications, spectroscopy, and sensing.