Cargando…

EMDS-7: Environmental microorganism image dataset seventh version for multiple object detection evaluation

Nowadays, the detection of environmental microorganism indicators is essential for us to assess the degree of pollution, but the traditional detection methods consume a lot of manpower and material resources. Therefore, it is necessary for us to make microbial data sets to be used in artificial inte...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Hechen, Li, Chen, Zhao, Xin, Cai, Bencheng, Zhang, Jiawei, Ma, Pingli, Zhao, Peng, Chen, Ao, Jiang, Tao, Sun, Hongzan, Teng, Yueyang, Qi, Shouliang, Huang, Xinyu, Grzegorzek, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986282/
https://www.ncbi.nlm.nih.gov/pubmed/36891388
http://dx.doi.org/10.3389/fmicb.2023.1084312
_version_ 1784901130108534784
author Yang, Hechen
Li, Chen
Zhao, Xin
Cai, Bencheng
Zhang, Jiawei
Ma, Pingli
Zhao, Peng
Chen, Ao
Jiang, Tao
Sun, Hongzan
Teng, Yueyang
Qi, Shouliang
Huang, Xinyu
Grzegorzek, Marcin
author_facet Yang, Hechen
Li, Chen
Zhao, Xin
Cai, Bencheng
Zhang, Jiawei
Ma, Pingli
Zhao, Peng
Chen, Ao
Jiang, Tao
Sun, Hongzan
Teng, Yueyang
Qi, Shouliang
Huang, Xinyu
Grzegorzek, Marcin
author_sort Yang, Hechen
collection PubMed
description Nowadays, the detection of environmental microorganism indicators is essential for us to assess the degree of pollution, but the traditional detection methods consume a lot of manpower and material resources. Therefore, it is necessary for us to make microbial data sets to be used in artificial intelligence. The Environmental Microorganism Image Dataset Seventh Version (EMDS-7) is a microscopic image data set that is applied in the field of multi-object detection of artificial intelligence. This method reduces the chemicals, manpower and equipment used in the process of detecting microorganisms. EMDS-7 including the original Environmental Microorganism (EM) images and the corresponding object labeling files in “.XML” format file. The EMDS-7 data set consists of 41 types of EMs, which has a total of 2,65 images and 13,216 labeled objects. The EMDS-7 database mainly focuses on the object detection. In order to prove the effectiveness of EMDS-7, we select the most commonly used deep learning methods (Faster-Region Convolutional Neural Network (Faster-RCNN), YOLOv3, YOLOv4, SSD, and RetinaNet) and evaluation indices for testing and evaluation. EMDS-7 is freely published for non-commercial purpose at: https://figshare.com/articles/dataset/EMDS-7_DataSet/16869571.
format Online
Article
Text
id pubmed-9986282
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-99862822023-03-07 EMDS-7: Environmental microorganism image dataset seventh version for multiple object detection evaluation Yang, Hechen Li, Chen Zhao, Xin Cai, Bencheng Zhang, Jiawei Ma, Pingli Zhao, Peng Chen, Ao Jiang, Tao Sun, Hongzan Teng, Yueyang Qi, Shouliang Huang, Xinyu Grzegorzek, Marcin Front Microbiol Microbiology Nowadays, the detection of environmental microorganism indicators is essential for us to assess the degree of pollution, but the traditional detection methods consume a lot of manpower and material resources. Therefore, it is necessary for us to make microbial data sets to be used in artificial intelligence. The Environmental Microorganism Image Dataset Seventh Version (EMDS-7) is a microscopic image data set that is applied in the field of multi-object detection of artificial intelligence. This method reduces the chemicals, manpower and equipment used in the process of detecting microorganisms. EMDS-7 including the original Environmental Microorganism (EM) images and the corresponding object labeling files in “.XML” format file. The EMDS-7 data set consists of 41 types of EMs, which has a total of 2,65 images and 13,216 labeled objects. The EMDS-7 database mainly focuses on the object detection. In order to prove the effectiveness of EMDS-7, we select the most commonly used deep learning methods (Faster-Region Convolutional Neural Network (Faster-RCNN), YOLOv3, YOLOv4, SSD, and RetinaNet) and evaluation indices for testing and evaluation. EMDS-7 is freely published for non-commercial purpose at: https://figshare.com/articles/dataset/EMDS-7_DataSet/16869571. Frontiers Media S.A. 2023-02-20 /pmc/articles/PMC9986282/ /pubmed/36891388 http://dx.doi.org/10.3389/fmicb.2023.1084312 Text en Copyright © 2023 Yang, Li, Zhao, Cai, Zhang, Ma, Zhao, Chen, Jiang, Sun, Teng, Qi, Huang and Grzegorzek. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Yang, Hechen
Li, Chen
Zhao, Xin
Cai, Bencheng
Zhang, Jiawei
Ma, Pingli
Zhao, Peng
Chen, Ao
Jiang, Tao
Sun, Hongzan
Teng, Yueyang
Qi, Shouliang
Huang, Xinyu
Grzegorzek, Marcin
EMDS-7: Environmental microorganism image dataset seventh version for multiple object detection evaluation
title EMDS-7: Environmental microorganism image dataset seventh version for multiple object detection evaluation
title_full EMDS-7: Environmental microorganism image dataset seventh version for multiple object detection evaluation
title_fullStr EMDS-7: Environmental microorganism image dataset seventh version for multiple object detection evaluation
title_full_unstemmed EMDS-7: Environmental microorganism image dataset seventh version for multiple object detection evaluation
title_short EMDS-7: Environmental microorganism image dataset seventh version for multiple object detection evaluation
title_sort emds-7: environmental microorganism image dataset seventh version for multiple object detection evaluation
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986282/
https://www.ncbi.nlm.nih.gov/pubmed/36891388
http://dx.doi.org/10.3389/fmicb.2023.1084312
work_keys_str_mv AT yanghechen emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT lichen emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT zhaoxin emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT caibencheng emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT zhangjiawei emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT mapingli emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT zhaopeng emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT chenao emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT jiangtao emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT sunhongzan emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT tengyueyang emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT qishouliang emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT huangxinyu emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation
AT grzegorzekmarcin emds7environmentalmicroorganismimagedatasetseventhversionformultipleobjectdetectionevaluation