Cargando…

Quantitatively detecting Candida albicans enolase1 with a one-step double monoclonal antibody sandwich ELISA assay

Invasive candidiasis (IC) is often a cause of severe concern for the hospitalized patients, particularly those who are critically sick. However management of this disease is challenging due to a lack of effective laboratory diagnostic techniques. Hence, we have developed a one-step double antibody s...

Descripción completa

Detalles Bibliográficos
Autores principales: Piao, Jingzi, Li, Ning, Zhang, Lina, Meng, Hanbing, Sun, Qingqing, He, Zhengxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986313/
https://www.ncbi.nlm.nih.gov/pubmed/36891387
http://dx.doi.org/10.3389/fmicb.2023.1078709
Descripción
Sumario:Invasive candidiasis (IC) is often a cause of severe concern for the hospitalized patients, particularly those who are critically sick. However management of this disease is challenging due to a lack of effective laboratory diagnostic techniques. Hence, we have developed a one-step double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) using a pair of specific monoclonal antibodies (mAbs) for the quantitative detection of Candida albicans enolase1 (CaEno1), which is considered as an important diagnostic biomarker for IC. The diagnostic efficiency of the DAS-ELISA was evaluated by using a rabbit model of systemic candidiasis and compared with other assays. The method validation results demonstrated that the developed method was sensitive, reliable, and feasible. The findings of the rabbit model plasma analysis indicated that the diagnostic efficiency of the CaEno1 detection assay was better in comparison to the (1,3)-β-D-glucan detection and blood culture. CaEno1 is present in the blood of infected rabbits for a brief period and at relatively low levels and thus the combination of CaEno1 antigen and IgG antibodies detection could aid to increase diagnostic efficiency. However, to improve the clinical application of CaEno1 detection in the future, efforts should be made to increase the detection limit of the test by promoting technical developments and by optimizing the protocol for the clinical serial determinations.