Cargando…
Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging
BACKGROUND: To evaluate multiparametric magnetic resonance imaging (mpMRI) parameters, such as TransPA (transverse prostate maximum sectional area), TransCGA (transverse central gland sectional area), TransPZA (transverse peripheral zone sectional area), and TransPAI (TransPZA/TransCGA ratio) in pre...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986422/ https://www.ncbi.nlm.nih.gov/pubmed/36890814 http://dx.doi.org/10.3389/fonc.2023.1082564 |
_version_ | 1784901161510240256 |
---|---|
author | Gaudiano, Caterina Braccischi, Lorenzo Taninokuchi Tomassoni, Makoto Paccapelo, Alexandro Bianchi, Lorenzo Corcioni, Beniamino Ciccarese, Federica Schiavina, Riccardo Droghetti, Matteo Giunchi, Francesca Fiorentino, Michelangelo Brunocilla, Eugenio Golfieri, Rita |
author_facet | Gaudiano, Caterina Braccischi, Lorenzo Taninokuchi Tomassoni, Makoto Paccapelo, Alexandro Bianchi, Lorenzo Corcioni, Beniamino Ciccarese, Federica Schiavina, Riccardo Droghetti, Matteo Giunchi, Francesca Fiorentino, Michelangelo Brunocilla, Eugenio Golfieri, Rita |
author_sort | Gaudiano, Caterina |
collection | PubMed |
description | BACKGROUND: To evaluate multiparametric magnetic resonance imaging (mpMRI) parameters, such as TransPA (transverse prostate maximum sectional area), TransCGA (transverse central gland sectional area), TransPZA (transverse peripheral zone sectional area), and TransPAI (TransPZA/TransCGA ratio) in predicting prostate cancer (PCa) in prostate imaging reporting and data system (PI-RADS) 3 lesions. METHODS: Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), the area under the receiver operating characteristic curve (AUC), and the best cut-off, were calculated. Univariate and multivariate analyses were carried out to evaluate the capability to predict PCa. RESULTS: Out of 120 PI-RADS 3 lesions, 54 (45.0%) were PCa with 34 (28.3%) csPCas. Median TransPA, TransCGA, TransPZA and TransPAI were 15.4cm(2), 9.1cm(2), 5.5cm(2) and 0.57, respectively. At multivariate analysis, location in the transition zone (OR=7.92, 95% CI: 2.70-23.29, P<0.001) and TransPA (OR=0.83, 95% CI: 0.76-0.92, P<0.001) were independent predictors of PCa. The TransPA (OR=0.90, 95% CI: 0.082-0.99, P=0.022) was an independent predictor of csPCa. The best cut-off of TransPA for csPCa was 18 (Sensitivity 88.2%, Specificity 37.2%, PPV 35.7%, NPV 88.9%). The discrimination (AUC) of the multivariate model was 0.627 (95% CI: 0.519-0.734, P<0.031). CONCLUSIONS: In PI-RADS 3 lesions, the TransPA could be useful in selecting patients requiring biopsy. |
format | Online Article Text |
id | pubmed-9986422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99864222023-03-07 Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging Gaudiano, Caterina Braccischi, Lorenzo Taninokuchi Tomassoni, Makoto Paccapelo, Alexandro Bianchi, Lorenzo Corcioni, Beniamino Ciccarese, Federica Schiavina, Riccardo Droghetti, Matteo Giunchi, Francesca Fiorentino, Michelangelo Brunocilla, Eugenio Golfieri, Rita Front Oncol Oncology BACKGROUND: To evaluate multiparametric magnetic resonance imaging (mpMRI) parameters, such as TransPA (transverse prostate maximum sectional area), TransCGA (transverse central gland sectional area), TransPZA (transverse peripheral zone sectional area), and TransPAI (TransPZA/TransCGA ratio) in predicting prostate cancer (PCa) in prostate imaging reporting and data system (PI-RADS) 3 lesions. METHODS: Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), the area under the receiver operating characteristic curve (AUC), and the best cut-off, were calculated. Univariate and multivariate analyses were carried out to evaluate the capability to predict PCa. RESULTS: Out of 120 PI-RADS 3 lesions, 54 (45.0%) were PCa with 34 (28.3%) csPCas. Median TransPA, TransCGA, TransPZA and TransPAI were 15.4cm(2), 9.1cm(2), 5.5cm(2) and 0.57, respectively. At multivariate analysis, location in the transition zone (OR=7.92, 95% CI: 2.70-23.29, P<0.001) and TransPA (OR=0.83, 95% CI: 0.76-0.92, P<0.001) were independent predictors of PCa. The TransPA (OR=0.90, 95% CI: 0.082-0.99, P=0.022) was an independent predictor of csPCa. The best cut-off of TransPA for csPCa was 18 (Sensitivity 88.2%, Specificity 37.2%, PPV 35.7%, NPV 88.9%). The discrimination (AUC) of the multivariate model was 0.627 (95% CI: 0.519-0.734, P<0.031). CONCLUSIONS: In PI-RADS 3 lesions, the TransPA could be useful in selecting patients requiring biopsy. Frontiers Media S.A. 2023-02-20 /pmc/articles/PMC9986422/ /pubmed/36890814 http://dx.doi.org/10.3389/fonc.2023.1082564 Text en Copyright © 2023 Gaudiano, Braccischi, Taninokuchi Tomassoni, Paccapelo, Bianchi, Corcioni, Ciccarese, Schiavina, Droghetti, Giunchi, Fiorentino, Brunocilla and Golfieri https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Gaudiano, Caterina Braccischi, Lorenzo Taninokuchi Tomassoni, Makoto Paccapelo, Alexandro Bianchi, Lorenzo Corcioni, Beniamino Ciccarese, Federica Schiavina, Riccardo Droghetti, Matteo Giunchi, Francesca Fiorentino, Michelangelo Brunocilla, Eugenio Golfieri, Rita Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging |
title | Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging |
title_full | Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging |
title_fullStr | Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging |
title_full_unstemmed | Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging |
title_short | Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging |
title_sort | transverse prostate maximum sectional area can predict clinically significant prostate cancer in pi-rads 3 lesions at multiparametric magnetic resonance imaging |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986422/ https://www.ncbi.nlm.nih.gov/pubmed/36890814 http://dx.doi.org/10.3389/fonc.2023.1082564 |
work_keys_str_mv | AT gaudianocaterina transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT braccischilorenzo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT taninokuchitomassonimakoto transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT paccapeloalexandro transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT bianchilorenzo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT corcionibeniamino transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT ciccaresefederica transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT schiavinariccardo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT droghettimatteo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT giunchifrancesca transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT fiorentinomichelangelo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT brunocillaeugenio transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging AT golfieririta transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging |