Cargando…

Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging

BACKGROUND: To evaluate multiparametric magnetic resonance imaging (mpMRI) parameters, such as TransPA (transverse prostate maximum sectional area), TransCGA (transverse central gland sectional area), TransPZA (transverse peripheral zone sectional area), and TransPAI (TransPZA/TransCGA ratio) in pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaudiano, Caterina, Braccischi, Lorenzo, Taninokuchi Tomassoni, Makoto, Paccapelo, Alexandro, Bianchi, Lorenzo, Corcioni, Beniamino, Ciccarese, Federica, Schiavina, Riccardo, Droghetti, Matteo, Giunchi, Francesca, Fiorentino, Michelangelo, Brunocilla, Eugenio, Golfieri, Rita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986422/
https://www.ncbi.nlm.nih.gov/pubmed/36890814
http://dx.doi.org/10.3389/fonc.2023.1082564
_version_ 1784901161510240256
author Gaudiano, Caterina
Braccischi, Lorenzo
Taninokuchi Tomassoni, Makoto
Paccapelo, Alexandro
Bianchi, Lorenzo
Corcioni, Beniamino
Ciccarese, Federica
Schiavina, Riccardo
Droghetti, Matteo
Giunchi, Francesca
Fiorentino, Michelangelo
Brunocilla, Eugenio
Golfieri, Rita
author_facet Gaudiano, Caterina
Braccischi, Lorenzo
Taninokuchi Tomassoni, Makoto
Paccapelo, Alexandro
Bianchi, Lorenzo
Corcioni, Beniamino
Ciccarese, Federica
Schiavina, Riccardo
Droghetti, Matteo
Giunchi, Francesca
Fiorentino, Michelangelo
Brunocilla, Eugenio
Golfieri, Rita
author_sort Gaudiano, Caterina
collection PubMed
description BACKGROUND: To evaluate multiparametric magnetic resonance imaging (mpMRI) parameters, such as TransPA (transverse prostate maximum sectional area), TransCGA (transverse central gland sectional area), TransPZA (transverse peripheral zone sectional area), and TransPAI (TransPZA/TransCGA ratio) in predicting prostate cancer (PCa) in prostate imaging reporting and data system (PI-RADS) 3 lesions. METHODS: Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), the area under the receiver operating characteristic curve (AUC), and the best cut-off, were calculated. Univariate and multivariate analyses were carried out to evaluate the capability to predict PCa. RESULTS: Out of 120 PI-RADS 3 lesions, 54 (45.0%) were PCa with 34 (28.3%) csPCas. Median TransPA, TransCGA, TransPZA and TransPAI were 15.4cm(2), 9.1cm(2), 5.5cm(2) and 0.57, respectively. At multivariate analysis, location in the transition zone (OR=7.92, 95% CI: 2.70-23.29, P<0.001) and TransPA (OR=0.83, 95% CI: 0.76-0.92, P<0.001) were independent predictors of PCa. The TransPA (OR=0.90, 95% CI: 0.082-0.99, P=0.022) was an independent predictor of csPCa. The best cut-off of TransPA for csPCa was 18 (Sensitivity 88.2%, Specificity 37.2%, PPV 35.7%, NPV 88.9%). The discrimination (AUC) of the multivariate model was 0.627 (95% CI: 0.519-0.734, P<0.031). CONCLUSIONS: In PI-RADS 3 lesions, the TransPA could be useful in selecting patients requiring biopsy.
format Online
Article
Text
id pubmed-9986422
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-99864222023-03-07 Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging Gaudiano, Caterina Braccischi, Lorenzo Taninokuchi Tomassoni, Makoto Paccapelo, Alexandro Bianchi, Lorenzo Corcioni, Beniamino Ciccarese, Federica Schiavina, Riccardo Droghetti, Matteo Giunchi, Francesca Fiorentino, Michelangelo Brunocilla, Eugenio Golfieri, Rita Front Oncol Oncology BACKGROUND: To evaluate multiparametric magnetic resonance imaging (mpMRI) parameters, such as TransPA (transverse prostate maximum sectional area), TransCGA (transverse central gland sectional area), TransPZA (transverse peripheral zone sectional area), and TransPAI (TransPZA/TransCGA ratio) in predicting prostate cancer (PCa) in prostate imaging reporting and data system (PI-RADS) 3 lesions. METHODS: Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), the area under the receiver operating characteristic curve (AUC), and the best cut-off, were calculated. Univariate and multivariate analyses were carried out to evaluate the capability to predict PCa. RESULTS: Out of 120 PI-RADS 3 lesions, 54 (45.0%) were PCa with 34 (28.3%) csPCas. Median TransPA, TransCGA, TransPZA and TransPAI were 15.4cm(2), 9.1cm(2), 5.5cm(2) and 0.57, respectively. At multivariate analysis, location in the transition zone (OR=7.92, 95% CI: 2.70-23.29, P<0.001) and TransPA (OR=0.83, 95% CI: 0.76-0.92, P<0.001) were independent predictors of PCa. The TransPA (OR=0.90, 95% CI: 0.082-0.99, P=0.022) was an independent predictor of csPCa. The best cut-off of TransPA for csPCa was 18 (Sensitivity 88.2%, Specificity 37.2%, PPV 35.7%, NPV 88.9%). The discrimination (AUC) of the multivariate model was 0.627 (95% CI: 0.519-0.734, P<0.031). CONCLUSIONS: In PI-RADS 3 lesions, the TransPA could be useful in selecting patients requiring biopsy. Frontiers Media S.A. 2023-02-20 /pmc/articles/PMC9986422/ /pubmed/36890814 http://dx.doi.org/10.3389/fonc.2023.1082564 Text en Copyright © 2023 Gaudiano, Braccischi, Taninokuchi Tomassoni, Paccapelo, Bianchi, Corcioni, Ciccarese, Schiavina, Droghetti, Giunchi, Fiorentino, Brunocilla and Golfieri https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Gaudiano, Caterina
Braccischi, Lorenzo
Taninokuchi Tomassoni, Makoto
Paccapelo, Alexandro
Bianchi, Lorenzo
Corcioni, Beniamino
Ciccarese, Federica
Schiavina, Riccardo
Droghetti, Matteo
Giunchi, Francesca
Fiorentino, Michelangelo
Brunocilla, Eugenio
Golfieri, Rita
Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging
title Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging
title_full Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging
title_fullStr Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging
title_full_unstemmed Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging
title_short Transverse prostate maximum sectional area can predict clinically significant prostate cancer in PI-RADS 3 lesions at multiparametric magnetic resonance imaging
title_sort transverse prostate maximum sectional area can predict clinically significant prostate cancer in pi-rads 3 lesions at multiparametric magnetic resonance imaging
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986422/
https://www.ncbi.nlm.nih.gov/pubmed/36890814
http://dx.doi.org/10.3389/fonc.2023.1082564
work_keys_str_mv AT gaudianocaterina transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT braccischilorenzo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT taninokuchitomassonimakoto transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT paccapeloalexandro transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT bianchilorenzo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT corcionibeniamino transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT ciccaresefederica transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT schiavinariccardo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT droghettimatteo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT giunchifrancesca transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT fiorentinomichelangelo transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT brunocillaeugenio transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging
AT golfieririta transverseprostatemaximumsectionalareacanpredictclinicallysignificantprostatecancerinpirads3lesionsatmultiparametricmagneticresonanceimaging