Cargando…

Deep learning-based technique for lesions segmentation in CT scan images for COVID-19 prediction

Since 2019, COVID-19 disease caused significant damage and it has become a serious health issue in the worldwide. The number of infected and confirmed cases is increasing day by day. Different hospitals and countries around the world to this day are not equipped enough to treat these cases and stop...

Descripción completa

Detalles Bibliográficos
Autores principales: Afif, Mouna, Ayachi, Riadh, Said, Yahia, Atri, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986667/
https://www.ncbi.nlm.nih.gov/pubmed/37362746
http://dx.doi.org/10.1007/s11042-023-14941-w
Descripción
Sumario:Since 2019, COVID-19 disease caused significant damage and it has become a serious health issue in the worldwide. The number of infected and confirmed cases is increasing day by day. Different hospitals and countries around the world to this day are not equipped enough to treat these cases and stop this pandemic evolution. Lung and chest X-ray images (e.g., radiography images) and chest CT images are the most effective imaging techniques to analyze and diagnose the COVID-19 related problems. Deep learning-based techniques have recently shown good performance in computer vision and healthcare fields. We propose developing a new deep learning-based application for COVID-19 segmentation and analysis in this work. The proposed system is developed based on the context aggregation neural network. This network consists of three main modules: the context fuse model (CFM), attention mix module (AMM) and a residual convolutional module (RCM). The developed system can detect two main COVID-19-related regions: ground glass opacity and consolidation area in CT images. Generally, these lesions are often related to common pneumonia and COVID 19 cases. Training and testing experiments have been conducted using the COVID-x-CT dataset. Based on the obtained results, the developed system demonstrated better and more competitive results compared to state-of-the-art performances. The numerical findings demonstrate the effectiveness of the proposed work by outperforming other works in terms of accuracy by a factor of over 96.23%.