Cargando…
Machine Learning and Real-World Data to Predict Lung Cancer Risk in Routine Care
BACKGROUND: This study used machine learning to develop a 3-year lung cancer risk prediction model with large real-world data in a mostly younger population. METHODS: Over 4.7 million individuals, aged 45 to 65 years with no history of any cancer or lung cancer screening, diagnostic, or treatment pr...
Autores principales: | Chandran, Urmila, Reps, Jenna, Yang, Robert, Vachani, Anil, Maldonado, Fabien, Kalsekar, Iftekhar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986687/ https://www.ncbi.nlm.nih.gov/pubmed/36576991 http://dx.doi.org/10.1158/1055-9965.EPI-22-0873 |
Ejemplares similares
-
Improving visual communication of discriminative accuracy for predictive models: the probability threshold plot
por: Johnston, Stephen S, et al.
Publicado: (2021) -
Can machine-learning improve cardiovascular risk prediction using routine clinical data?
por: Weng, Stephen F., et al.
Publicado: (2017) -
Patient Preferences for Lung Cancer Interception Therapy
por: Janssen, Ellen M., et al.
Publicado: (2023) -
Inferring disease severity in rheumatoid arthritis using predictive modeling in administrative claims databases
por: Chandran, Urmila, et al.
Publicado: (2019) -
Real-world glycemic outcomes in patients with type 2 diabetes initiating exenatide once weekly and liraglutide once daily: a retrospective cohort study
por: Saunders, William B, et al.
Publicado: (2016)