Cargando…
Accelerating crystal structure determination with iterative AlphaFold prediction
Experimental structure determination can be accelerated with artificial intelligence (AI)-based structure-prediction methods such as AlphaFold. Here, an automatic procedure requiring only sequence information and crystallographic data is presented that uses AlphaFold predictions to produce an elect...
Autores principales: | Terwilliger, Thomas C., Afonine, Pavel V., Liebschner, Dorothee, Croll, Tristan I., McCoy, Airlie J., Oeffner, Robert D., Williams, Christopher J., Poon, Billy K., Richardson, Jane S., Read, Randy J., Adams, Paul D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986801/ https://www.ncbi.nlm.nih.gov/pubmed/36876433 http://dx.doi.org/10.1107/S205979832300102X |
Ejemplares similares
-
Improved AlphaFold modeling with implicit experimental information
por: Terwilliger, Thomas C., et al.
Publicado: (2022) -
Putting AlphaFold models to work with phenix.process_predicted_model and ISOLDE
por: Oeffner, Robert D., et al.
Publicado: (2022) -
Implications of AlphaFold2 for crystallographic phasing by molecular replacement
por: McCoy, Airlie J., et al.
Publicado: (2022) -
On the application of the expected log-likelihood gain to decision making in molecular replacement
por: Oeffner, Robert D., et al.
Publicado: (2018) -
Measuring and using information gained by observing diffraction data
por: Read, Randy J., et al.
Publicado: (2020)