Cargando…

Measurement of the Quantum Tunneling Gap in a Dysprosocenium Single-Molecule Magnet

[Image: see text] We perform magnetization sweeps on the high-performing single-molecule magnet [Dy(Cp(ttt))(2)][B(C(6)F(5))(4)] (Cp(ttt) = C(5)H(2)(t)Bu(3)-1,2,4; (t)Bu = C(CH(3))(3)) to determine the quantum tunneling gap of the ground-state avoided crossing at zero-field, finding a value on the o...

Descripción completa

Detalles Bibliográficos
Autores principales: Blackmore, William J. A., Mattioni, Andrea, Corner, Sophie C., Evans, Peter, Gransbury, Gemma K., Mills, David P., Chilton, Nicholas F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986949/
https://www.ncbi.nlm.nih.gov/pubmed/36812166
http://dx.doi.org/10.1021/acs.jpclett.3c00034
Descripción
Sumario:[Image: see text] We perform magnetization sweeps on the high-performing single-molecule magnet [Dy(Cp(ttt))(2)][B(C(6)F(5))(4)] (Cp(ttt) = C(5)H(2)(t)Bu(3)-1,2,4; (t)Bu = C(CH(3))(3)) to determine the quantum tunneling gap of the ground-state avoided crossing at zero-field, finding a value on the order of 10(–7) cm(–1). In addition to the pure crystalline material, we also measure the tunnel splitting of [Dy(Cp(ttt))(2)][B(C(6)F(5))(4)] dissolved in dichloromethane (DCM) and 1,2-difluorobenzene (DFB). We find that concentrations of 200 or 100 mM [Dy(Cp(ttt))(2)][B(C(6)F(5))(4)] in these solvents increases the size of the tunneling gap compared to the pure sample, despite a similarity in the strength of the dipolar fields, indicating that either a structural or vibrational change due to the environment increases quantum tunneling rates.