Cargando…
Defect-Induced Transport Enhancement in Carbon–Boron Nitride–Carbon Heteronanotube Junctions
[Image: see text] New heteromaterials, particularly those involving nanoscale elements such as nanotubes, have opened a wide window for the next generation of materials and devices. Here, we perform density functional theory (DFT) simulations combined with a Green’s function (GF) scattering approach...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986950/ https://www.ncbi.nlm.nih.gov/pubmed/36795974 http://dx.doi.org/10.1021/acs.jpclett.3c00004 |
_version_ | 1784901274922123264 |
---|---|
author | Algharagholy, Laith A. García-Suárez, V. M. |
author_facet | Algharagholy, Laith A. García-Suárez, V. M. |
author_sort | Algharagholy, Laith A. |
collection | PubMed |
description | [Image: see text] New heteromaterials, particularly those involving nanoscale elements such as nanotubes, have opened a wide window for the next generation of materials and devices. Here, we perform density functional theory (DFT) simulations combined with a Green’s function (GF) scattering approach to investigate the electronic transport properties of defective heteronanotube junctions (hNTJs) made of (6,6) carbon nanotubes (CNT) with a boron nitride nanotube (BNNT) as scatterer. We used the sculpturene method to form different heteronanotube junctions with various types of defects in the boron nitride part. Our results show that the defects and the curvature induced by them have a nontrivial impact on the transport properties and, interestingly, lead to an increase of the conductance of the heteronanotube junctions compared to the free-defect junction. We also show that narrowing the BNNTs region leads to a large decrease of the conductance, an effect that is opposite to that of the defects. |
format | Online Article Text |
id | pubmed-9986950 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99869502023-03-07 Defect-Induced Transport Enhancement in Carbon–Boron Nitride–Carbon Heteronanotube Junctions Algharagholy, Laith A. García-Suárez, V. M. J Phys Chem Lett [Image: see text] New heteromaterials, particularly those involving nanoscale elements such as nanotubes, have opened a wide window for the next generation of materials and devices. Here, we perform density functional theory (DFT) simulations combined with a Green’s function (GF) scattering approach to investigate the electronic transport properties of defective heteronanotube junctions (hNTJs) made of (6,6) carbon nanotubes (CNT) with a boron nitride nanotube (BNNT) as scatterer. We used the sculpturene method to form different heteronanotube junctions with various types of defects in the boron nitride part. Our results show that the defects and the curvature induced by them have a nontrivial impact on the transport properties and, interestingly, lead to an increase of the conductance of the heteronanotube junctions compared to the free-defect junction. We also show that narrowing the BNNTs region leads to a large decrease of the conductance, an effect that is opposite to that of the defects. American Chemical Society 2023-02-16 /pmc/articles/PMC9986950/ /pubmed/36795974 http://dx.doi.org/10.1021/acs.jpclett.3c00004 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Algharagholy, Laith A. García-Suárez, V. M. Defect-Induced Transport Enhancement in Carbon–Boron Nitride–Carbon Heteronanotube Junctions |
title | Defect-Induced
Transport Enhancement in Carbon–Boron
Nitride–Carbon Heteronanotube Junctions |
title_full | Defect-Induced
Transport Enhancement in Carbon–Boron
Nitride–Carbon Heteronanotube Junctions |
title_fullStr | Defect-Induced
Transport Enhancement in Carbon–Boron
Nitride–Carbon Heteronanotube Junctions |
title_full_unstemmed | Defect-Induced
Transport Enhancement in Carbon–Boron
Nitride–Carbon Heteronanotube Junctions |
title_short | Defect-Induced
Transport Enhancement in Carbon–Boron
Nitride–Carbon Heteronanotube Junctions |
title_sort | defect-induced
transport enhancement in carbon–boron
nitride–carbon heteronanotube junctions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986950/ https://www.ncbi.nlm.nih.gov/pubmed/36795974 http://dx.doi.org/10.1021/acs.jpclett.3c00004 |
work_keys_str_mv | AT algharagholylaitha defectinducedtransportenhancementincarbonboronnitridecarbonheteronanotubejunctions AT garciasuarezvm defectinducedtransportenhancementincarbonboronnitridecarbonheteronanotubejunctions |