Cargando…

A Novel Blockchain and Internet of Things-Based Food Traceability System for Smart Cities

Rapid urbanization has recently caused serious problems for cities all around the world. Smart cities have drawn much interest from researchers in the present research paradigm to manage the expanding urban population. Frameworks for smart cities are planned and implemented using platforms based on...

Descripción completa

Detalles Bibliográficos
Autores principales: Tripathi, Ashish Kumar, Akul Krishnan, K., Pandey, Avinash Chandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987374/
https://www.ncbi.nlm.nih.gov/pubmed/36987505
http://dx.doi.org/10.1007/s11277-023-10230-9
Descripción
Sumario:Rapid urbanization has recently caused serious problems for cities all around the world. Smart cities have drawn much interest from researchers in the present research paradigm to manage the expanding urban population. Frameworks for smart cities are planned and implemented using platforms based on blockchain and the Internet of Things (BIOT). Smart cities may use the BIoT platform to provide improved transportation, food traceability, and healthcare services. Food safety is one of the sectors where less research has been done than the others. The importance of food safety is now more widely recognized, making it essential to improve the traceability and transparency of the food supply chain. In this paper, a novel BIOT-based layered framework using EOSIO has been proposed for effective food traceability. The proposed system first identifies the suitable traceability units to provide better transparency and traceability and then defines and implements a layered architecture using Ethereum and EOSIO blockchain platforms. The performance of the proposed EOSIO-based model is evaluated using the practicality of the consensus algorithm, block production rate, throughput, and block confirmation time. The proposed traceability system attains a block production rate of 0.5 s and a block confirmation time of 1 s, which is much lower than the Ethereum-based traceability system. Hence, from the experimental evidence, the superiority of the proposed EOSIO-based food traceability can be observed.