Cargando…
Wearable device and smartphone data quantify ALS progression and may provide novel outcome measures
Amyotrophic lateral sclerosis (ALS) therapeutic development has largely relied on staff-administered functional rating scales to determine treatment efficacy. We sought to determine if mobile applications (apps) and wearable devices can be used to quantify ALS disease progression through active (sur...
Autores principales: | Johnson, Stephen A., Karas, Marta, Burke, Katherine M., Straczkiewicz, Marcin, Scheier, Zoe A., Clark, Alison P., Iwasaki, Satoshi, Lahav, Amir, Iyer, Amrita S., Onnela, Jukka-Pekka, Berry, James D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987377/ https://www.ncbi.nlm.nih.gov/pubmed/36879025 http://dx.doi.org/10.1038/s41746-023-00778-y |
Ejemplares similares
-
A “one-size-fits-most” walking recognition method for smartphones, smartwatches, and wearable accelerometers
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
A systematic review of smartphone-based human activity recognition methods for health research
por: Straczkiewicz, Marcin, et al.
Publicado: (2021) -
Validation of an open-source smartphone step counting algorithm in clinical and non-clinical settings
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
Open-Source, Step-Counting Algorithm for Smartphone Data Collected in Clinical and Nonclinical Settings: Algorithm Development and Validation Study
por: Straczkiewicz, Marcin, et al.
Publicado: (2023) -
Design and results of a smartphone‐based digital phenotyping study to quantify ALS progression
por: Berry, James D., et al.
Publicado: (2019)