Cargando…

Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers

BACKGROUND: Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic dat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hawken, Steven, Ducharme, Robin, Murphy, Malia S. Q., Olibris, Brieanne, Bota, A. Brianne, Wilson, Lindsay A., Cheng, Wei, Little, Julian, Potter, Beth K., Denize, Kathryn M., Lamoureux, Monica, Henderson, Matthew, Rittenhouse, Katelyn J., Price, Joan T., Mwape, Humphrey, Vwalika, Bellington, Musonda, Patrick, Pervin, Jesmin, Chowdhury, A. K. Azad, Rahman, Anisur, Chakraborty, Pranesh, Stringer, Jeffrey S. A., Wilson, Kumanan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987787/
https://www.ncbi.nlm.nih.gov/pubmed/36877673
http://dx.doi.org/10.1371/journal.pone.0281074
_version_ 1784901450817601536
author Hawken, Steven
Ducharme, Robin
Murphy, Malia S. Q.
Olibris, Brieanne
Bota, A. Brianne
Wilson, Lindsay A.
Cheng, Wei
Little, Julian
Potter, Beth K.
Denize, Kathryn M.
Lamoureux, Monica
Henderson, Matthew
Rittenhouse, Katelyn J.
Price, Joan T.
Mwape, Humphrey
Vwalika, Bellington
Musonda, Patrick
Pervin, Jesmin
Chowdhury, A. K. Azad
Rahman, Anisur
Chakraborty, Pranesh
Stringer, Jeffrey S. A.
Wilson, Kumanan
author_facet Hawken, Steven
Ducharme, Robin
Murphy, Malia S. Q.
Olibris, Brieanne
Bota, A. Brianne
Wilson, Lindsay A.
Cheng, Wei
Little, Julian
Potter, Beth K.
Denize, Kathryn M.
Lamoureux, Monica
Henderson, Matthew
Rittenhouse, Katelyn J.
Price, Joan T.
Mwape, Humphrey
Vwalika, Bellington
Musonda, Patrick
Pervin, Jesmin
Chowdhury, A. K. Azad
Rahman, Anisur
Chakraborty, Pranesh
Stringer, Jeffrey S. A.
Wilson, Kumanan
author_sort Hawken, Steven
collection PubMed
description BACKGROUND: Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data. METHODS: We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound. RESULTS: Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh). CONCLUSIONS: Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data.
format Online
Article
Text
id pubmed-9987787
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-99877872023-03-07 Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers Hawken, Steven Ducharme, Robin Murphy, Malia S. Q. Olibris, Brieanne Bota, A. Brianne Wilson, Lindsay A. Cheng, Wei Little, Julian Potter, Beth K. Denize, Kathryn M. Lamoureux, Monica Henderson, Matthew Rittenhouse, Katelyn J. Price, Joan T. Mwape, Humphrey Vwalika, Bellington Musonda, Patrick Pervin, Jesmin Chowdhury, A. K. Azad Rahman, Anisur Chakraborty, Pranesh Stringer, Jeffrey S. A. Wilson, Kumanan PLoS One Research Article BACKGROUND: Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data. METHODS: We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound. RESULTS: Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh). CONCLUSIONS: Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data. Public Library of Science 2023-03-06 /pmc/articles/PMC9987787/ /pubmed/36877673 http://dx.doi.org/10.1371/journal.pone.0281074 Text en © 2023 Hawken et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hawken, Steven
Ducharme, Robin
Murphy, Malia S. Q.
Olibris, Brieanne
Bota, A. Brianne
Wilson, Lindsay A.
Cheng, Wei
Little, Julian
Potter, Beth K.
Denize, Kathryn M.
Lamoureux, Monica
Henderson, Matthew
Rittenhouse, Katelyn J.
Price, Joan T.
Mwape, Humphrey
Vwalika, Bellington
Musonda, Patrick
Pervin, Jesmin
Chowdhury, A. K. Azad
Rahman, Anisur
Chakraborty, Pranesh
Stringer, Jeffrey S. A.
Wilson, Kumanan
Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_full Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_fullStr Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_full_unstemmed Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_short Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
title_sort development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987787/
https://www.ncbi.nlm.nih.gov/pubmed/36877673
http://dx.doi.org/10.1371/journal.pone.0281074
work_keys_str_mv AT hawkensteven developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT ducharmerobin developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT murphymaliasq developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT olibrisbrieanne developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT botaabrianne developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT wilsonlindsaya developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT chengwei developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT littlejulian developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT potterbethk developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT denizekathrynm developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT lamoureuxmonica developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT hendersonmatthew developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT rittenhousekatelynj developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT pricejoant developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT mwapehumphrey developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT vwalikabellington developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT musondapatrick developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT pervinjesmin developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT chowdhuryakazad developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT rahmananisur developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT chakrabortypranesh developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT stringerjeffreysa developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers
AT wilsonkumanan developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers