Cargando…
Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers
BACKGROUND: Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic dat...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987787/ https://www.ncbi.nlm.nih.gov/pubmed/36877673 http://dx.doi.org/10.1371/journal.pone.0281074 |
_version_ | 1784901450817601536 |
---|---|
author | Hawken, Steven Ducharme, Robin Murphy, Malia S. Q. Olibris, Brieanne Bota, A. Brianne Wilson, Lindsay A. Cheng, Wei Little, Julian Potter, Beth K. Denize, Kathryn M. Lamoureux, Monica Henderson, Matthew Rittenhouse, Katelyn J. Price, Joan T. Mwape, Humphrey Vwalika, Bellington Musonda, Patrick Pervin, Jesmin Chowdhury, A. K. Azad Rahman, Anisur Chakraborty, Pranesh Stringer, Jeffrey S. A. Wilson, Kumanan |
author_facet | Hawken, Steven Ducharme, Robin Murphy, Malia S. Q. Olibris, Brieanne Bota, A. Brianne Wilson, Lindsay A. Cheng, Wei Little, Julian Potter, Beth K. Denize, Kathryn M. Lamoureux, Monica Henderson, Matthew Rittenhouse, Katelyn J. Price, Joan T. Mwape, Humphrey Vwalika, Bellington Musonda, Patrick Pervin, Jesmin Chowdhury, A. K. Azad Rahman, Anisur Chakraborty, Pranesh Stringer, Jeffrey S. A. Wilson, Kumanan |
author_sort | Hawken, Steven |
collection | PubMed |
description | BACKGROUND: Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data. METHODS: We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound. RESULTS: Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh). CONCLUSIONS: Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data. |
format | Online Article Text |
id | pubmed-9987787 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-99877872023-03-07 Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers Hawken, Steven Ducharme, Robin Murphy, Malia S. Q. Olibris, Brieanne Bota, A. Brianne Wilson, Lindsay A. Cheng, Wei Little, Julian Potter, Beth K. Denize, Kathryn M. Lamoureux, Monica Henderson, Matthew Rittenhouse, Katelyn J. Price, Joan T. Mwape, Humphrey Vwalika, Bellington Musonda, Patrick Pervin, Jesmin Chowdhury, A. K. Azad Rahman, Anisur Chakraborty, Pranesh Stringer, Jeffrey S. A. Wilson, Kumanan PLoS One Research Article BACKGROUND: Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data. METHODS: We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound. RESULTS: Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh). CONCLUSIONS: Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data. Public Library of Science 2023-03-06 /pmc/articles/PMC9987787/ /pubmed/36877673 http://dx.doi.org/10.1371/journal.pone.0281074 Text en © 2023 Hawken et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hawken, Steven Ducharme, Robin Murphy, Malia S. Q. Olibris, Brieanne Bota, A. Brianne Wilson, Lindsay A. Cheng, Wei Little, Julian Potter, Beth K. Denize, Kathryn M. Lamoureux, Monica Henderson, Matthew Rittenhouse, Katelyn J. Price, Joan T. Mwape, Humphrey Vwalika, Bellington Musonda, Patrick Pervin, Jesmin Chowdhury, A. K. Azad Rahman, Anisur Chakraborty, Pranesh Stringer, Jeffrey S. A. Wilson, Kumanan Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers |
title | Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers |
title_full | Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers |
title_fullStr | Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers |
title_full_unstemmed | Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers |
title_short | Development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers |
title_sort | development and external validation of machine learning algorithms for postnatal gestational age estimation using clinical data and metabolomic markers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987787/ https://www.ncbi.nlm.nih.gov/pubmed/36877673 http://dx.doi.org/10.1371/journal.pone.0281074 |
work_keys_str_mv | AT hawkensteven developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT ducharmerobin developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT murphymaliasq developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT olibrisbrieanne developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT botaabrianne developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT wilsonlindsaya developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT chengwei developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT littlejulian developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT potterbethk developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT denizekathrynm developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT lamoureuxmonica developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT hendersonmatthew developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT rittenhousekatelynj developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT pricejoant developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT mwapehumphrey developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT vwalikabellington developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT musondapatrick developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT pervinjesmin developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT chowdhuryakazad developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT rahmananisur developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT chakrabortypranesh developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT stringerjeffreysa developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers AT wilsonkumanan developmentandexternalvalidationofmachinelearningalgorithmsforpostnatalgestationalageestimationusingclinicaldataandmetabolomicmarkers |