Cargando…
Hidden variable models reveal the effects of infection from changes in host survival
The impacts of disease on host vital rates can be demonstrated using longitudinal studies, but these studies can be expensive and logistically challenging. We examined the utility of hidden variable models to infer the individual effects of infectious disease from population-level measurements of su...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987815/ https://www.ncbi.nlm.nih.gov/pubmed/36812266 http://dx.doi.org/10.1371/journal.pcbi.1010910 |
_version_ | 1784901457516953600 |
---|---|
author | Ferguson, Jake M. González-González, Andrea Kaiser, Johnathan A. Winzer, Sara M. Anast, Justin M. Ridenhour, Ben Miura, Tanya A. Parent, Christine E. |
author_facet | Ferguson, Jake M. González-González, Andrea Kaiser, Johnathan A. Winzer, Sara M. Anast, Justin M. Ridenhour, Ben Miura, Tanya A. Parent, Christine E. |
author_sort | Ferguson, Jake M. |
collection | PubMed |
description | The impacts of disease on host vital rates can be demonstrated using longitudinal studies, but these studies can be expensive and logistically challenging. We examined the utility of hidden variable models to infer the individual effects of infectious disease from population-level measurements of survival when longitudinal studies are not possible. Our approach seeks to explain temporal deviations in population-level survival after introducing a disease causative agent when disease prevalence cannot be directly measured by coupling survival and epidemiological models. We tested this approach using an experimental host system (Drosophila melanogaster) with multiple distinct pathogens to validate the ability of the hidden variable model to infer per-capita disease rates. We then applied the approach to a disease outbreak in harbor seals (Phoca vituline) that had data on observed strandings but no epidemiological data. We found that our hidden variable modeling approach could successfully detect the per-capita effects of disease from monitored survival rates in both the experimental and wild populations. Our approach may prove useful for detecting epidemics from public health data in regions where standard surveillance techniques are not available and in the study of epidemics in wildlife populations, where longitudinal studies can be especially difficult to implement. |
format | Online Article Text |
id | pubmed-9987815 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-99878152023-03-07 Hidden variable models reveal the effects of infection from changes in host survival Ferguson, Jake M. González-González, Andrea Kaiser, Johnathan A. Winzer, Sara M. Anast, Justin M. Ridenhour, Ben Miura, Tanya A. Parent, Christine E. PLoS Comput Biol Research Article The impacts of disease on host vital rates can be demonstrated using longitudinal studies, but these studies can be expensive and logistically challenging. We examined the utility of hidden variable models to infer the individual effects of infectious disease from population-level measurements of survival when longitudinal studies are not possible. Our approach seeks to explain temporal deviations in population-level survival after introducing a disease causative agent when disease prevalence cannot be directly measured by coupling survival and epidemiological models. We tested this approach using an experimental host system (Drosophila melanogaster) with multiple distinct pathogens to validate the ability of the hidden variable model to infer per-capita disease rates. We then applied the approach to a disease outbreak in harbor seals (Phoca vituline) that had data on observed strandings but no epidemiological data. We found that our hidden variable modeling approach could successfully detect the per-capita effects of disease from monitored survival rates in both the experimental and wild populations. Our approach may prove useful for detecting epidemics from public health data in regions where standard surveillance techniques are not available and in the study of epidemics in wildlife populations, where longitudinal studies can be especially difficult to implement. Public Library of Science 2023-02-22 /pmc/articles/PMC9987815/ /pubmed/36812266 http://dx.doi.org/10.1371/journal.pcbi.1010910 Text en © 2023 Ferguson et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ferguson, Jake M. González-González, Andrea Kaiser, Johnathan A. Winzer, Sara M. Anast, Justin M. Ridenhour, Ben Miura, Tanya A. Parent, Christine E. Hidden variable models reveal the effects of infection from changes in host survival |
title | Hidden variable models reveal the effects of infection from changes in host survival |
title_full | Hidden variable models reveal the effects of infection from changes in host survival |
title_fullStr | Hidden variable models reveal the effects of infection from changes in host survival |
title_full_unstemmed | Hidden variable models reveal the effects of infection from changes in host survival |
title_short | Hidden variable models reveal the effects of infection from changes in host survival |
title_sort | hidden variable models reveal the effects of infection from changes in host survival |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987815/ https://www.ncbi.nlm.nih.gov/pubmed/36812266 http://dx.doi.org/10.1371/journal.pcbi.1010910 |
work_keys_str_mv | AT fergusonjakem hiddenvariablemodelsrevealtheeffectsofinfectionfromchangesinhostsurvival AT gonzalezgonzalezandrea hiddenvariablemodelsrevealtheeffectsofinfectionfromchangesinhostsurvival AT kaiserjohnathana hiddenvariablemodelsrevealtheeffectsofinfectionfromchangesinhostsurvival AT winzersaram hiddenvariablemodelsrevealtheeffectsofinfectionfromchangesinhostsurvival AT anastjustinm hiddenvariablemodelsrevealtheeffectsofinfectionfromchangesinhostsurvival AT ridenhourben hiddenvariablemodelsrevealtheeffectsofinfectionfromchangesinhostsurvival AT miuratanyaa hiddenvariablemodelsrevealtheeffectsofinfectionfromchangesinhostsurvival AT parentchristinee hiddenvariablemodelsrevealtheeffectsofinfectionfromchangesinhostsurvival |