Cargando…
Decision tree learning in Neo4j on homogeneous and unconnected graph nodes from biological and clinical datasets
BACKGROUND: Graph databases enable efficient storage of heterogeneous, highly-interlinked data, such as clinical data. Subsequently, researchers can extract relevant features from these datasets and apply machine learning for diagnosis, biomarker discovery, or understanding pathogenesis. METHODS: To...
Autores principales: | Mondal, Rahul, Do, Minh Dung, Ahmed, Nasim Uddin, Walke, Daniel, Micheel, Daniel, Broneske, David, Saake, Gunter, Heyer, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988195/ https://www.ncbi.nlm.nih.gov/pubmed/36879243 http://dx.doi.org/10.1186/s12911-023-02112-8 |
Ejemplares similares
-
The importance of graph databases and graph learning for clinical applications
por: Walke, Daniel, et al.
Publicado: (2023) -
RPP Algorithm: A Method for Discovering Interesting Rare Itemsets
por: Darrab, Sadeq, et al.
Publicado: (2020) -
Neo4j graph dataset of cycling paths in Slovenia
por: Rajšp, Alen, et al.
Publicado: (2023) -
Low-Power IoT for Monitoring Unconnected Remote Areas
por: Andreadis, Alessandro, et al.
Publicado: (2023) -
Learning Neo4j: run blazingly fast queries on complex graph datasets with the power of the Neo4j graph database
por: Van Bruggen, Rik
Publicado: (2014)