Cargando…

Modeling of dielectric resonator antenna array for retina photoreceptors()

The retina encompasses several cone and rod photoreceptors at fovea region i.e., 90 million cells of rod photoreceptors and 4.5million cells of cone photoreceptors. The overall photoreceptors determine the vision of every human. An electromagnetic dielectric resonator antenna has been presented for...

Descripción completa

Detalles Bibliográficos
Autores principales: NoroozOliaei, Mahdi, Riazi Esfahani, Hamid, Abrishamian, Mohammad Sadegh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988474/
https://www.ncbi.nlm.nih.gov/pubmed/36895386
http://dx.doi.org/10.1016/j.heliyon.2023.e13794
_version_ 1784901579680251904
author NoroozOliaei, Mahdi
Riazi Esfahani, Hamid
Abrishamian, Mohammad Sadegh
author_facet NoroozOliaei, Mahdi
Riazi Esfahani, Hamid
Abrishamian, Mohammad Sadegh
author_sort NoroozOliaei, Mahdi
collection PubMed
description The retina encompasses several cone and rod photoreceptors at fovea region i.e., 90 million cells of rod photoreceptors and 4.5million cells of cone photoreceptors. The overall photoreceptors determine the vision of every human. An electromagnetic dielectric resonator antenna has been presented for retina photoreceptors in order to model them at fovea and its peripheral retina with the respected angular spectrum. Three coloring primary system of human eye (R, G, B) can be realized based on the model. Three miscellaneous models i.e., simple, graphene coated, and interdigital models have been presented in this paper. The nonlinear property of interdigital structures is one of the best advantages to use for creating the capacitor. The capacitance property helps improving the upper band of visible spectrum. The absorption of light for graphene as an energy harvesting material and its conversion into electrochemical signals is making it one of the best models. The mentioned three electromagnetic models of human photoreceptors have been expressed as a receiver antenna. The proposed electromagnetic models based on dielectric resonator antenna (DRA) are being analyzed for cones and rods photoreceptors of retina in the human eye by Finite Integral Method (FIM) utilized by CST MWS. The results show that the models are so fine for vision spectrum due to its localized near field enhancement property. The results indicate fine parameters of [Formula: see text] (return loss below -10 dB) with invaluable resonants in a wide range of frequencies from 405 THz to 790 THz (vision spectrum), appropriate [Formula: see text] (insertion loss 3-dB bandwidth), very good field distribution of electric and magnetic fields for flowing the power and electrochemical signals. Finally, mfERG clinical and experimental results validate the numeric results by the normalized output to input ratio of these models and it points out that these models can stimulate the electrochemical signals in photoreceptor cells for the best suiting of realizing the new retinal implants.
format Online
Article
Text
id pubmed-9988474
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99884742023-03-08 Modeling of dielectric resonator antenna array for retina photoreceptors() NoroozOliaei, Mahdi Riazi Esfahani, Hamid Abrishamian, Mohammad Sadegh Heliyon Research Article The retina encompasses several cone and rod photoreceptors at fovea region i.e., 90 million cells of rod photoreceptors and 4.5million cells of cone photoreceptors. The overall photoreceptors determine the vision of every human. An electromagnetic dielectric resonator antenna has been presented for retina photoreceptors in order to model them at fovea and its peripheral retina with the respected angular spectrum. Three coloring primary system of human eye (R, G, B) can be realized based on the model. Three miscellaneous models i.e., simple, graphene coated, and interdigital models have been presented in this paper. The nonlinear property of interdigital structures is one of the best advantages to use for creating the capacitor. The capacitance property helps improving the upper band of visible spectrum. The absorption of light for graphene as an energy harvesting material and its conversion into electrochemical signals is making it one of the best models. The mentioned three electromagnetic models of human photoreceptors have been expressed as a receiver antenna. The proposed electromagnetic models based on dielectric resonator antenna (DRA) are being analyzed for cones and rods photoreceptors of retina in the human eye by Finite Integral Method (FIM) utilized by CST MWS. The results show that the models are so fine for vision spectrum due to its localized near field enhancement property. The results indicate fine parameters of [Formula: see text] (return loss below -10 dB) with invaluable resonants in a wide range of frequencies from 405 THz to 790 THz (vision spectrum), appropriate [Formula: see text] (insertion loss 3-dB bandwidth), very good field distribution of electric and magnetic fields for flowing the power and electrochemical signals. Finally, mfERG clinical and experimental results validate the numeric results by the normalized output to input ratio of these models and it points out that these models can stimulate the electrochemical signals in photoreceptor cells for the best suiting of realizing the new retinal implants. Elsevier 2023-02-21 /pmc/articles/PMC9988474/ /pubmed/36895386 http://dx.doi.org/10.1016/j.heliyon.2023.e13794 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
NoroozOliaei, Mahdi
Riazi Esfahani, Hamid
Abrishamian, Mohammad Sadegh
Modeling of dielectric resonator antenna array for retina photoreceptors()
title Modeling of dielectric resonator antenna array for retina photoreceptors()
title_full Modeling of dielectric resonator antenna array for retina photoreceptors()
title_fullStr Modeling of dielectric resonator antenna array for retina photoreceptors()
title_full_unstemmed Modeling of dielectric resonator antenna array for retina photoreceptors()
title_short Modeling of dielectric resonator antenna array for retina photoreceptors()
title_sort modeling of dielectric resonator antenna array for retina photoreceptors()
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988474/
https://www.ncbi.nlm.nih.gov/pubmed/36895386
http://dx.doi.org/10.1016/j.heliyon.2023.e13794
work_keys_str_mv AT noroozoliaeimahdi modelingofdielectricresonatorantennaarrayforretinaphotoreceptors
AT riaziesfahanihamid modelingofdielectricresonatorantennaarrayforretinaphotoreceptors
AT abrishamianmohammadsadegh modelingofdielectricresonatorantennaarrayforretinaphotoreceptors