Cargando…
FDD: a deep learning–based steel defect detectors
Surface defects are a common issue that affects product quality in the industrial manufacturing process. Many companies put a lot of effort into developing automated inspection systems to handle this issue. In this work, we propose a novel deep learning–based surface defect inspection system called...
Autores principales: | Akhyar, Fityanul, Liu, Ying, Hsu, Chao-Yung, Shih, Timothy K., Lin, Chih-Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988608/ https://www.ncbi.nlm.nih.gov/pubmed/37073280 http://dx.doi.org/10.1007/s00170-023-11087-9 |
Ejemplares similares
-
Enhancing Precision with an Ensemble Generative Adversarial Network for Steel Surface Defect Detectors (EnsGAN-SDD)
por: Akhyar, Fityanul, et al.
Publicado: (2022) -
Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems
por: Sun, Qiang, et al.
Publicado: (2022) -
Generation and Initial Characterization of FDD Knock In Mice
por: Giliberto, Luca, et al.
Publicado: (2009) -
On Scalability of FDD-Based Cell-Free Massive MIMO Framework
por: Hassan, Beenish, et al.
Publicado: (2023) -
CSI Feedback Model Based on Multi-Source Characterization in FDD Systems
por: Pan, Fei, et al.
Publicado: (2023)