Cargando…
Causes of epigastric pain and vomiting after laparoscopic-assisted radical right hemicolectomy - superior mesenteric artery syndrome
BACKGROUND: Superior mesenteric artery syndrome (SMAS) is a rare condition causing functional obstruction of the third portion of the duodenum. Postoperative SMAS following laparoscopic-assisted radical right hemicolectomy is even less prevalent and can often be unrecognized by radiologists and clin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988633/ https://www.ncbi.nlm.nih.gov/pubmed/36896299 http://dx.doi.org/10.4240/wjgs.v15.i2.193 |
Sumario: | BACKGROUND: Superior mesenteric artery syndrome (SMAS) is a rare condition causing functional obstruction of the third portion of the duodenum. Postoperative SMAS following laparoscopic-assisted radical right hemicolectomy is even less prevalent and can often be unrecognized by radiologists and clinicians. AIM: To analyze the clinical features, risk factors, and prevention of SMAS after laparoscopic-assisted radical right hemicolectomy. METHODS: We retrospectively analyzed clinical data of 256 patients undergoing laparoscopic-assisted radical right hemicolectomy in the Affiliated Hospital of Southwest Medical University from January 2019 to May 2022. The occurrence of SMAS and its countermeasures were evaluated. Among the 256 patients, SMAS was confirmed in six patients (2.3%) by postoperative clinical presentation and imaging features. All six patients were examined by enhanced computed tomography (CT) before and after surgery. Patients who developed SMAS after surgery were used as the experimental group. A simple random sampling method was used to select 20 patients who underwent surgery at the same time but did not develop SMAS and received preoperative abdominal enhanced CT as the control group. The angle and distance between the superior mesenteric artery and abdominal aorta were measured before and after surgery in the experimental group and before surgery in the control group. The preoperative body mass index (BMI) of the experimental group and the control group was calculated. The type of lymphadenectomy and surgical approach in the experimental and control groups were recorded. The differences in angle and distance were compared preoperatively and postoperatively in the experimental group compared. The differences in angle, distance, BMI, type of lymphadenectomy and surgical approach between the experimental and control groups were compared, and the diagnostic efficacy of the significant parameters was assessed using receiver operating characteristic curves. RESULTS: In the experimental group, the aortomesenteric angle and distance after surgery were significantly decreased than those before surgery (P < 0.05). The aortomesenteric angle, distance and BMI were significantly higher in the control group than in the experimental (P < 0.05). There was no significant difference in the type of lymphadenectomy and surgical approach between the two groups (P > 0.05). CONCLUSION: The small preoperative aortomesenteric angle and distance and low BMI may be important factors for the complication. Over-cleaning of lymph fatty tissues may also be associated with this complication. |
---|