Cargando…
Toward learning Lattice Boltzmann collision operators
ABSTRACT: In this work, we explore the possibility of learning from data collision operators for the Lattice Boltzmann Method using a deep learning approach. We compare a hierarchy of designs of the neural network (NN) collision operator and evaluate the performance of the resulting LBM method in re...
Autores principales: | Corbetta, Alessandro, Gabbana, Alessandro, Gyrya, Vitaliy, Livescu, Daniel, Prins, Joost, Toschi, Federico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988764/ https://www.ncbi.nlm.nih.gov/pubmed/36877295 http://dx.doi.org/10.1140/epje/s10189-023-00267-w |
Ejemplares similares
-
A lattice Boltzmann study of particle settling in a fluctuating multicomponent fluid under confinement
por: Xue, Xiao, et al.
Publicado: (2021) -
An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids
por: Kuron, Michael, et al.
Publicado: (2021) -
Critical behavior in active lattice models of motility-induced phase separation
por: Dittrich, Florian, et al.
Publicado: (2021) -
Multiparticle collision dynamics simulations of a squirmer in a nematic fluid
por: Mandal, Shubhadeep, et al.
Publicado: (2021) -
Deep reinforcement learning for turbulent drag reduction in channel flows
por: Guastoni, Luca, et al.
Publicado: (2023)