Cargando…
A deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images
BACKGROUND: This study aimed to develop and validate a deep learning (DL) model to identify atelectasis and attic retraction pocket in cases of otitis media with effusion (OME) using multi-center otoscopic images. METHOD: A total of 6393 OME otoscopic images from three centers were used to develop a...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988777/ https://www.ncbi.nlm.nih.gov/pubmed/36227348 http://dx.doi.org/10.1007/s00405-022-07632-z |
_version_ | 1784901638561988608 |
---|---|
author | Zeng, Junbo Deng, Wenting Yu, Jingang Xiao, Lichao Chen, Suijun Zhang, Xueyuan Zeng, Linqi Chen, Donglang Li, Peng Chen, Yubin Zhang, Hongzheng Shu, Fan Wu, Minjian Su, Yuejia Li, Yuanqing Cai, Yuexin Zheng, Yiqing |
author_facet | Zeng, Junbo Deng, Wenting Yu, Jingang Xiao, Lichao Chen, Suijun Zhang, Xueyuan Zeng, Linqi Chen, Donglang Li, Peng Chen, Yubin Zhang, Hongzheng Shu, Fan Wu, Minjian Su, Yuejia Li, Yuanqing Cai, Yuexin Zheng, Yiqing |
author_sort | Zeng, Junbo |
collection | PubMed |
description | BACKGROUND: This study aimed to develop and validate a deep learning (DL) model to identify atelectasis and attic retraction pocket in cases of otitis media with effusion (OME) using multi-center otoscopic images. METHOD: A total of 6393 OME otoscopic images from three centers were used to develop and validate a DL model for detecting atelectasis and attic retraction pocket. A threefold random cross-validation procedure was adopted to divide the dataset into training validation sets on a patient level. A team of otologists was assigned to diagnose and characterize atelectasis and attic retraction pocket in otoscopic images. Receiver operating characteristic (ROC) curves, including area under the ROC curve (AUC), accuracy, sensitivity, and specificity were used to assess the performance of the DL model. Class Activation Mapping (CAM) illustrated the discriminative regions in the otoscopic images. RESULTS: Among all OME otoscopic images, 3564 (55.74%) were identified with attic retraction pocket, and 2460 (38.48%) with atelectasis. The diagnostic DL model of attic retraction pocket and atelectasis achieved a threefold cross-validation accuracy of 89% and 79%, AUC of 0.89 and 0.87, a sensitivity of 0.93 and 0.71, and a specificity of 0.62 and 0.84, respectively. Larger and deeper cases of atelectasis and attic retraction pocket showed greater weight, based on the red color depicted in the heat map of CAM. CONCLUSION: The DL algorithm could be employed to identify atelectasis and attic retraction pocket in otoscopic images of OME, and as a tool to assist in the accurate diagnosis of OME. |
format | Online Article Text |
id | pubmed-9988777 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-99887772023-03-08 A deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images Zeng, Junbo Deng, Wenting Yu, Jingang Xiao, Lichao Chen, Suijun Zhang, Xueyuan Zeng, Linqi Chen, Donglang Li, Peng Chen, Yubin Zhang, Hongzheng Shu, Fan Wu, Minjian Su, Yuejia Li, Yuanqing Cai, Yuexin Zheng, Yiqing Eur Arch Otorhinolaryngol Otology BACKGROUND: This study aimed to develop and validate a deep learning (DL) model to identify atelectasis and attic retraction pocket in cases of otitis media with effusion (OME) using multi-center otoscopic images. METHOD: A total of 6393 OME otoscopic images from three centers were used to develop and validate a DL model for detecting atelectasis and attic retraction pocket. A threefold random cross-validation procedure was adopted to divide the dataset into training validation sets on a patient level. A team of otologists was assigned to diagnose and characterize atelectasis and attic retraction pocket in otoscopic images. Receiver operating characteristic (ROC) curves, including area under the ROC curve (AUC), accuracy, sensitivity, and specificity were used to assess the performance of the DL model. Class Activation Mapping (CAM) illustrated the discriminative regions in the otoscopic images. RESULTS: Among all OME otoscopic images, 3564 (55.74%) were identified with attic retraction pocket, and 2460 (38.48%) with atelectasis. The diagnostic DL model of attic retraction pocket and atelectasis achieved a threefold cross-validation accuracy of 89% and 79%, AUC of 0.89 and 0.87, a sensitivity of 0.93 and 0.71, and a specificity of 0.62 and 0.84, respectively. Larger and deeper cases of atelectasis and attic retraction pocket showed greater weight, based on the red color depicted in the heat map of CAM. CONCLUSION: The DL algorithm could be employed to identify atelectasis and attic retraction pocket in otoscopic images of OME, and as a tool to assist in the accurate diagnosis of OME. Springer Berlin Heidelberg 2022-10-13 2023 /pmc/articles/PMC9988777/ /pubmed/36227348 http://dx.doi.org/10.1007/s00405-022-07632-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Otology Zeng, Junbo Deng, Wenting Yu, Jingang Xiao, Lichao Chen, Suijun Zhang, Xueyuan Zeng, Linqi Chen, Donglang Li, Peng Chen, Yubin Zhang, Hongzheng Shu, Fan Wu, Minjian Su, Yuejia Li, Yuanqing Cai, Yuexin Zheng, Yiqing A deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images |
title | A deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images |
title_full | A deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images |
title_fullStr | A deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images |
title_full_unstemmed | A deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images |
title_short | A deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images |
title_sort | deep learning approach to the diagnosis of atelectasis and attic retraction pocket in otitis media with effusion using otoscopic images |
topic | Otology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988777/ https://www.ncbi.nlm.nih.gov/pubmed/36227348 http://dx.doi.org/10.1007/s00405-022-07632-z |
work_keys_str_mv | AT zengjunbo adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT dengwenting adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT yujingang adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT xiaolichao adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT chensuijun adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT zhangxueyuan adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT zenglinqi adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT chendonglang adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT lipeng adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT chenyubin adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT zhanghongzheng adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT shufan adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT wuminjian adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT suyuejia adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT liyuanqing adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT caiyuexin adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT zhengyiqing adeeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT zengjunbo deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT dengwenting deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT yujingang deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT xiaolichao deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT chensuijun deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT zhangxueyuan deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT zenglinqi deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT chendonglang deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT lipeng deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT chenyubin deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT zhanghongzheng deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT shufan deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT wuminjian deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT suyuejia deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT liyuanqing deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT caiyuexin deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages AT zhengyiqing deeplearningapproachtothediagnosisofatelectasisandatticretractionpocketinotitismediawitheffusionusingotoscopicimages |