Cargando…
Responsible model deployment via model-agnostic uncertainty learning
Reliably predicting potential failure risks of machine learning (ML) systems when deployed with production data is a crucial aspect of trustworthy AI. This paper introduces the Risk Advisor, a novel post-hoc meta-learner for estimating failure risks and predictive uncertainties of any already-traine...
Autores principales: | Lahoti, Preethi, Gummadi, Krishna, Weikum, Gerhard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988805/ https://www.ncbi.nlm.nih.gov/pubmed/36910557 http://dx.doi.org/10.1007/s10994-022-06248-y |
Ejemplares similares
-
Combining Model-Agnostic Meta-Learning and Transfer Learning for Regression
por: Satrya, Wahyu Fadli, et al.
Publicado: (2023) -
Conceptual framework and uncertainty analysis for large-scale, species-agnostic modelling of landscape connectivity across Alberta, Canada
por: Marrec, Ronan, et al.
Publicado: (2020) -
Predicting dengue importation into Europe, using machine learning and model-agnostic methods
por: Salami, Donald, et al.
Publicado: (2020) -
Model-Agnostic Structural Transfer Learning for Cross-Domain Autonomous Activity Recognition
por: Alinia, Parastoo, et al.
Publicado: (2023) -
Model agnostic generation of counterfactual explanations for molecules
por: Wellawatte, Geemi P., et al.
Publicado: (2022)